
Predictive Linear-Gaussian Models of
Controlled Stochastic Dynamical Systems

Matthew Rudary MRUDARY@UMICH.EDU
Satinder Singh BAVEJA@UMICH.EDU

Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract
We introduce the controlled predictive linear-
Gaussian model (cPLG), a model that uses pre-
dictive state to model discrete-time dynami-
cal systems with real-valued observations and
vector-valued actions. This extends the PLG,
an uncontrolled model recently introduced by
Rudary et al. (2005). We show that the cPLG
subsumes controlled linear dynamical systems
(LDS, also called Kalman filter models) of
equal dimension, but requires fewer parame-
ters. We also introduce the predictive linear-
quadratic Gaussian problem, a cost-minimization
problem based on the cPLG that we show is
equivalent to linear-quadratic Gaussian problems
(LQG, sometimes called LQR). We present an al-
gorithm to estimate cPLG parameters from data,
and show that our algorithm is a consistent esti-
mation procedure. Finally, we present empirical
results suggesting that our algorithm performs fa-
vorably compared to expectation maximization
on controlled LDS models.

1. Introduction
Linear dynamical system models (LDSs), also known as
Kalman filter models or state-space models, are widely
used in control and prediction tasks in many applications
from a variety of fields. These models are very useful when
their parameters are known in advance. However, their pa-
rameters are not easily learned. This learning is typically
achieved using expectation maximization (EM). EM finds
parameters that locally optimize the expected likelihood of
the data, so it can learn an inaccurate model.

Recently, Rudary et al. (2005) introduced the predictive
linear-Gaussian model (PLG). Any uncontrolled LDS with

Appearing in Proceedings of the 23 rd International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

real-valued observations has an equivalent PLG. Rudary
et al. also introduced a parameter estimation algorithm that
obtains a consistent estimate of the parameters—that is,
as the dataset increases in size, the estimate converges in
probability to the true parameter values. The state of the
PLG is based on predictions about the future outcomes
in the system—that is, it is a predictive state representa-
tion (PSR). In domains with discrete observations, PSRs
have advantages over some traditional models. For exam-
ple, they have more expressive power than hidden Markov
models and partially observable Markov decision processes
(POMDPs) (Jaeger, 1997; Singh et al., 2004), and learning
one type of PSRs from data outperforms learning POMDPs
using EM on many small problems (Wolfe et al., 2005).
One of the strengths of PSRs, including PLGs, is their lack
of reference to latent state variables.

In this work, we introduce a new model of stochastic dy-
namical systems with real-valued observations and vector-
valued actions, the controlled predictive linear-Gaussian
model (cPLG). We show that the cPLG subsumes con-
trolled LDSs, and that optimal actions can be computed as
with LDSs, even without estimating the hidden state vari-
ables. In addition, we introduce a consistent parameter es-
timation algorithm for cPLGs, and experimentally compare
it to parameter estimation of LDSs using EM.

2. The cPLG Model
The cPLG model, like all models of dynamical systems,
computes the probability of future outcomes given the his-
tory of past interactions with the system; these interactions
consist of taking actions (each action is a vector from Rl)
and receiving observations (fromR). The cPLG is as pow-
erful as the controlled LDS, and its modeling power rests
on a few properties of the system. The future observations
in the system are jointly Gaussian random variables, and
the distribution of all of them can be computed from the
distribution of just the next n; n is thus the dimension of
the system. The distribution is extended beyond those n
observations by a linear function—that is, the (n+1)st ob-

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

servation in the future is a noisy linear function of the next
n observations. This noise is not i.i.d. The actions also
have a linear effect on future observations. The dynamics
of the system are illustrated by the following equation:

Yt+n+1 = g′Zt +
n−1∑
i=0

Γ′iut+i+1 + ηt+n+1. (1)

We will explain the meaning of (1) as we develop the math-
ematics of the model and describe the above properties of
the system in more detail.

First, this equation should be viewed from the standpoint
of extending the distribution of observations further into
the future, starting from t. The random variable Yt models
the observation at time t (a realization of that observation
will be denoted yt). As mentioned above, the observation
n + 1 timesteps in the future is a function of the next n
observations; these next n are collected into the vector Zt

(i.e., Zt = [Yt+1 Yt+2 · · · Yt+n]′, where A′ is the trans-
pose of the vector/matrix A). In fact, it is a linear function,
as g is a vector describing the linear effect of the next n
observations on the (n + 1)st.

Since Zt models observations in the future, knowing that
Yt+n+1 has a linear dependence on Zt is useless without
knowing the distribution of Zt. In fact, Zt is a Gaussian
random vector. The initial n observations, Z0, are nor-
mally distributed with mean µ0 and covariance Σ0 (which
we write as Z0 ∼ N (µ0,Σ0)); µ0 and Σ0 are the initial
state of the system, and are parameters of the cPLG. As
actions are taken and observations are seen, new state vari-
ables µt and Σt can be computed. Let ht represent the
history of interaction with the system through time t, viz.
u1, y1, u2, y2, . . . , ut, yt (where ut is the action at time t).
Then the distribution of the next n observations are given
by the state at t: Zt|ht ∼ N (µt,Σt).

The second term of (1) describes the effect of the actions
on future observations. Each Γi is an l-vector that defines
the linear effect that the action ut+i+1 has on the future ob-
servation Yt+n+1. Because observations in the future are
affected by future actions, and because we have no distri-
butional information about those actions, we must assume
something about future actions to make statements about
the future. So we assume that future actions will be zero
(i.e. will have no effect). This means the statement above
about the state variables was incomplete; the full semantics
of µt and Σt are that

Zt|ht, ut+1 = 0, ut+2 = 0, . . . ∼ N (µt,Σt).

The final term in (1) models the uncertainty in the future
observation. That is, ηt+n+1 is the noise term. Clearly, in
order for Yt+n+1 to be Gaussian, ηt+n+1 must be a Gaus-
sian random variable as well. But it need not be indepen-

dent of Zt. In fact, we allow the noise term for the observa-
tion n+1 steps in the future to covary with the intervening
n future observations. That is,

ηt+n+1|ht ∼ N (0, σ2) and Cov[Zt, ηt+n+1|ht] = C,

where σ2 and C are independent of time. This is contrary to
many models, including the LDS, that assume i.i.d. noise.

With these fundamentals laid out, we can define a cPLG.
The parameters of the model are the initial state variables,
µ0 and Σ0; the linear trend in the observations, g; the addi-
tive linear functions of the actions, Γ0, . . . ,Γn−1; the vari-
ance of the noise term, σ2; and the covariance of the noise
term with the observations, C. The state at time t is given
by the mean vector and covariance matrix of the n obser-
vations immediately in the future, µt and Σt. After fixing
ut+1 and observing Yt+1 = yt+1, we can update the state:

µt+1 = Gµt + Lut+1 +
ft

e′1Σte1
(yt+1 − e′1µt), and (2)

Σt+1 = GΣtG
′ + F − ftf

′
t

e′1Σte1
, (3)

where ei is the ith column of the n× n identity matrix,

G =
(

0 In−1

g′

)
,

ft = GΣte1 + (e′1C)en, F = σ2ene′n + GCe′n + enC ′G′,
and In−1 is the (n− 1)× (n− 1) identity matrix. L is the
linear effect of the next action on the next n observations.
Its ith row is Li = Γ′n−1 +

∑i−1
j=1(e

′
n−i+jg)Lj−i for i =

1, . . . , n. See Appendix A.1 for the derivation of (2) and
(3). We can now state one of our main results:

Theorem 1. Any controlled LDS with n-dimensional state
and scalar observations has an equivalent n-dimensional
cPLG.

That is, any system (with scalar observations) that can be
modeled by a controlled LDS can be modeled as compactly
by a cPLG.1 Indeed, it can be modeled even more com-
pactly; the cPLG achieves equivalent representative power
to the LDS with (3n2 − n)/2 fewer parameters. We defer
the proof of the theorem until Appendix A.3.

3. Optimal Control of the cPLG
One of the principle purposes of a controlled model is to
use it to maximize a reward function, or, equivalently, to

1This is despite the superficial resemblance of (1), the core
dynamics of the cPLG, to the ARX model, which is considerably
weaker in representative power than the LDS (Ljung, 1987). The
major differences are the non-i.i.d. noise and that (1) looks for-
ward where the ARX looks back.

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

minimize a cost function. Here we can look to the tra-
ditional LDS model for inspiration—one of its attractive
features is that, under a quadratic cost function, the opti-
mal action is the certainty-equivalent (CE) action. The CE
action is the one that would be optimal if the model were
noise-free and the state equal to the least-squares estimate
(i.e., the Kalman filter estimate). Moreover, the optimal CE
action is a linear function of the state estimate.

We will introduce the predictive linear-quadratic-Gaussian
(PLQG) framework, which applies a quadratic cost func-
tion to a cPLG model, and show that the optimal action in
this framework is a linear function of the mean vector µt.
We will also show that, under reasonable conditions, a cost
function can be selected that yields the same optimal con-
trols for an LDS and its equivalent cPLG.

Quadratic Cost Function Much work has focused on
the linear-quadratic-Gaussian (LQG) control problem; that
is, the problem of minimizing a quadratic cost function on
an LDS model.2 In the PLQG problem, on the other hand,
the goal is to minimize a quadratic cost function on a cPLG
model. At each timestep t (up to a horizon of T), the PLQG
framework assesses a cost that is quadratic in the mean vec-
tor µt−1 and the control ut.3 At the end of the horizon, a
terminal cost is added. That is, the PLQG quadratic cost
function Jµ can be written as

Jµ =
T∑

τ=1

jµ(µτ−1, uτ) + µ′T Wµ,fµT

where jµ(µ, u) = µ′Wµµ + 2u′Wµ,uµ + u′Wuu is the
per-timestep cost. We restrict Wµ and Wµ,f to be symmet-
ric positive semidefinite and Wu to be symmetric positive
definite (SPD).

This is quite similar to the cost function in the traditional
LQG framework. In that framework, a cost quadratic in
the latent state and action is assessed at each timestep
up through the cost horizon, T ; finally, a terminal cost
quadratic in the final state is added. The LQG quadratic
cost function is Jx (we use the superscript x to refer to the
LQG cost function, which is a function of the latent state
Xt; the superscript µ refers to the PLQG cost function, a
function of the mean vector µt). This can be written as

Jx =
T∑

τ=1

jx(Xτ , uτ) + X ′
T+1Wx,fXT+1,

where jx(X, u) = X ′WxX + 2u′Wx,uX + u′Wuu is the
per-timestep cost. We restrict Wx and Wx,f to be symmet-
ric positive semidefinite and Wu to be SPD.

2See Appendix A.2 for a definition of the LDS.
3The time indices of µt−1 and ut differ by one because the

initial mean vector is µ0; this is the information used by the PLQG
to select the first action u1.

Quadratic cost functions of this type are quite flexible; they
can be used to minimize the sum-of-squares of the states
or actions, to minimize energy expenditures (which may
depend on the product of state and action), etc. The LQG
is used in a wide variety of control applications, including
chemical plant control, aircraft control, and vibration can-
cellation. The PLQG’s cost function is just as flexible; we
will show that, under reasonable conditions, the PLQG can
represent any problem the LQG can, and in particular that
a cost function can be selected such that the optimal action
in both frameworks is the same.

Minimizing the Cost Function At a given time t, af-
ter observing a sequence ht−1 of observations and controls
through time t−1, the system must select a sequence of ac-
tions ut(ht−1), . . . , uT (ht−1) that minimizes the expected
cost. However, this can be cast as a dynamic programming
problem, so that ut(ht−1) can be selected independently
from future actions.

We will now show that the optimal action ut(ht−1) can be
computed as a linear function of the mean vector µt−1.

Lemma 2. The optimal action ut(ht−1) to be taken at time
t after observing history ht−1 is the CE optimal action and
a linear function of the mean vector µt−1.

Proof. Let Jµ
t (ht−1) be the optimal expected cost-to-go at

time t after observing ht−1:

Jµ
t (ht−1) =

= min
ut,...,uT

E

[
T∑

τ=t

jµ(µτ−1, uτ) + µ′T Wµ,fµT

∣∣∣∣∣ ht−1

]
= min

ut

E[jµ(µt−1, ut) + Jµ
t+1(ht−1, ut, Yt)|ht−1].

This can be divided into a history-independent constant
and a history-dependent part that is quadratic in the state:
Jµ

t (ht−1) = vµ
t +µ′t−1V

µ
t µt−1, where vµ

t and V µ
t are con-

stants. Now we can compute the expectation:

Jµ
t (ht−1) = min

ut

[(Gµt−1 + Lut)′V
µ
t+1(Gµt−1 + Lut)

+ jµ(µt−1, ut) + vµ
t],

where vµ
t = tr(V µ

t+1
ft−1f ′t−1
e′1Σt−1e1

) + vµ
t+1 (tr(A) denotes the

trace of the matrix A, i.e. the sum of the elements on its
diagonal). Since ft−1 and Σt−1 are independent of the sys-
tem’s history, vµ

t is not affected by the actions and can be
ignored in the minimization; hereafter we will focus only
on the quadratic, history-dependent part of Jµ

t .

The optimal action at t can be computed by taking the de-
rivative of Jµ

t with respect to ut, and then solving for the
zero. We thus get a linear function of the mean vector µt−1:

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

ut(ht−1) = −(Wu + L′V µ
t L)−1(Wµ,u + L′V µ

t G)µt−1

∆= Πµ
t µt−1.

It can be shown that vµ
t = 0 for all t when there is no

uncertainty, but that V µ
t remains unchanged. Thus this is

also the CE optimal action.

Having computed the optimal action, this result can now be
used to compute the quadratic part of Jµ

t :

V µ
t = Wz + G′V µ

t+1G− (W ′
µ,u + G′V µ

t+1L)×
(Wu + L′V µ

t+1L)−1(Wµ,u + L′V µ
t+1G).

The recursion is initialized by V µ
T+1 = Wµ,f .

We have already seen that for any n-dimensional controlled
LDS, there is an equivalent n-dimensional cPLG. It is also
the case that for any LQG based on an n-dimensional con-
trolled LDS with full rank,4 there is an equivalent PLQG
based on an n-dimensional cPLG. It is equivalent in the
following sense: Given a sequence ht−1 of actions and ob-
servations, both formalisms will select the same optimal
action ut, and the optimal expected cost-to-go computed
by each will differ by a constant independent of ht−1.

Theorem 3. For any n-dimensional LQG with full rank,
an equivalent n-dimensional PLQG exists that, given any
history of interaction with the system, computes the same
optimal action as the LQG.

In other words, the PLQG can be used to specify and solve
the same control problems as full-rank LQGs. The proof of
Theorem 3 can be found in Appendix A.4.

4. Parameter Estimation in cPLGs
The cPLG model has several potential advantages over the
LDS with respect to parameter estimation. First, LDS mod-
els have more parameters than cPLGs of the same dimen-
sion, and that parameter space has inherent symmetries not
present in cPLG parameter space. For example, two dis-
tinct LDS models describe the same system if any two ele-
ments of the Xt state vector (and corresponding rows and
columns of the parameters) are swapped. This symmetry
can cause difficulties in learning LDS models.

Another important advantage is that the cPLG parameters
have a definite meaning in relation to the data. For instance,
µ0 is the expected value of the first n observations. LDS

4We define a full-rank LDS as one for which M has full rank
(see (8) for a definition of M). If M is rank-deficient, for any
state xt there are infinitely many distinct states that place the same
distribution over future trajectories.

parameters do not have such an interpretation; A, for ex-
ample, is the linear trend in the latent variables, which has
no direct connection to the data. We exploit the meaning
of the parameters in the cPLG to estimate the parameters
through the Consistent Estimation algorithm (CE).

4.1. The CE Algorithm

The CE algorithm takes two inputs: the dimension of the
system (n) and a dataset consisting of multiple trajectories
collected through interaction with the system. The dataset
contains K such trajectories, each of which is N timesteps
long. We label the tth action and observation from the kth
trajectory as uk

t and yk
t , respectively. Thus, the kth trajec-

tory is the sequence uk
1 , yk

1 , uk
2 , yk

2 , . . . , uk
N , yk

N —note that
this follows our convention that the realization of a random
variable (in this case, the observation Yt) is set in lower-
case. We assume that each trajectory starts with the system
in its initial configuration. Because of the importance of
the variable Zt, the random vector representing the n ob-
servations following t, we also collect the data into vectors
zk
t = (yk

t+1 · · · yk
t+n)′.

As we describe the CE algorithm, it will be convenient to
consider subgroups of the parameters separately.

Linear Trends The first parameters to be estimated are
the trend parameters g and Γi, i = 0, . . . , n− 1. Note that
Yt+n+1 is a linear function of the data plus a noise term,
ηt+n+1. Averaging over the dataset,

yt+n+1 = g′zt +
n−1∑
i=0

Γ′iut+1+i + ηt+n+1

for t = 1, . . . , N − n − 1, where a bar over a variable de-
notes its average over the K trajectories in the dataset. We
can collect all these equations together in a single matrix
equation Ξγ + ε = Υ, where

Ξ =


z′0 u′1 · · · u′n
z′1 u′2 · · · u′n+1
...

...
. . .

...
z′N−n−1 u′N−n · · · u′N−1

 ,

γ =


g
Γ0

...
Γn−1

 , ε =


ηn+1

ηn+2
...

ηN

 , Υ =


yn+1

yn+2
...

yN

 .

We can estimate g and Γi by the equation γ̂ =
(Ξ′Ξ)−1Ξ′Υ. Since the rows of ε are not independent of
each other, this is a biased estimator. However, we will
see that it is consistent under certain conditions; that is, the
probability that the error is larger than some positive con-
stant shrinks to zero as the number of trajectories grows.

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

Initial State The next group of parameters to estimate
are the initial state parameters µ0 and Σ0. Recall that
µi

0 = E[Yi|u1 = 0, u2 = 0, . . .] (where µi
0 is the ith el-

ement of µ0). The sample mean is a natural estimator here,
but we must account for the effect of the actions that were
actually taken. Since we have estimates for g and Γi, we
can compute L̂, an estimate of L. Using L̂, the estimate of
the initial mean is computed by

µ̂i
0 = yi −

i−1∑
j=1

L̂jui−j , i = 1, . . . , n.

To estimate Σ0 using sample covariances, we must first

compute estimates ÊY
k

t of E[Yt|uk
1 , . . . , uk

t−1] for t =
1, . . . , n. This again requires the use of L̂ as well as the

newly computed µ̂0; ÊY
k

t is computed by starting with the
initial mean and then adding in the effect of the action ac-
tions of trajectory k:

ÊY
k

t = µ̂t
0 +

t−1∑
i=1

L̂iu
k
t−i, t = 1, . . . , n.

We then use these in the standard sample covariance calcu-
lation to obtain the estimate of Σ0. For i, j = 1, . . . n:

Σ̂ij
0 =

1
K − 1

K∑
k=1

(yk
i − ÊY

k

i)(yk
j − ÊY

k

j).

Noise Parameters The only parameters remaining are C
and σ2, the distributional parameters of the noise terms
ηk

t+n+1. These are computed using straightforward cal-
culations of sample variance and covariance of the noise
terms; this requires estimating those noise terms. To ac-
complish this, we solve (1) for ηt+n+1 and replace vari-
ables with data and parameters with estimates:

η̂k
t+n+1 = yk

t+n+1 − ĝ′zk
t −

n−1∑
i=1

Γ̂′iu
k
t+i+1.

Now we can estimate C and σ2 (taking advantage of the
fact that E[ηt+n+1] = 0):

σ̂2 =
1

K(N − n)− 1

N−n−1∑
t=0

K∑
k=1

(η̂k
t+n+1)

2 and

Ĉ =
1

K(N − n)− 1

N−n−1∑
t=0

K∑
k=1

zk
t η̂k

t+n+1.

4.2. Convergence of the CE Algorithm

As implied by the name of the algorithm, CE produces con-
sistent estimates of the parameters. However, there are cer-
tain requirements on the system and on the actions used to

create the training data for this to hold; such a system and
policy taken together are called CE-learnable, which we
will define below.

More formally, the sequence of estimates produced by in-
creasing the number of trajectories K (in a CE-learnable
system) converges in probability to the true parameters,
where convergence in probability is defined as follows:
Definition 1. The sequence x̂1, x̂2, . . . converges to x in
probability if limn→∞ Pr(|x̂n − x| > δ) = 0 for positive
δ. We write this as “x̂n

−→p x as n →∞.”

However, in order for the system to be CE-learnable, a min-
imal condition must be satisfied: Ξ′Ξ must be invertible. In
particular, it must be invertible in the limit as the number
of trajectories grows. This is the only requirement for CE-
learnability, but it bears some further discussion.

Assume that the actions ut are generated by some stochas-
tic policy such that E[ut] = πt. Then, by the weak law of
large numbers, Ξ −→p Ξ∗ as K →∞, where

Ξ∗ =

 E[z′0|ui = πi∀i] π′1 · · · π′n
...

...
. . .

...
E[z′N−n−1|ui = πi∀i] π′N−n · · · π′N−1

 .

If Ξ∗ has rank (l + 1)n, (Ξ∗′Ξ∗)−1 will exist (because the
inner product is positive semi-definite of rank equal to Ξ∗

and is a square matrix of dimension (l + 1)n).

One necessary condition for learnability, then, is that the
“π” part of Ξ∗ (i.e. all but the n left-most columns) must
have full rank. So actions selected from a mean-zero Gaus-
sian distribution, for example, are not compatible with CE.
One compatible policy (which we use in our experiments)
uses a periodic sequence for the means of the actions. Here,
only every nth action has a non-zero mean. The mean vec-
tor for those actions each have a single non-zero element
that rotates in turn—so the nth action is drawn from a dis-
tribution with mean (a 0 0 . . .)′ (for positive a), the (2n)th
has a mean of (0 a 0 . . .)′, and so on. Therefore, after nl
actions, each element of the action vector has been exer-
cised once. In our experiments, we chose a = 2, and drew
actions from a Gaussian distribution with means as just de-
scribed and variance 1.

As stated above, when the system and training policy are
CE-learnable, the parameter estimates are consistent.
Theorem 4. If a dynamical system can be modeled by an
n-dimensional cPLG and generates a training set whose
trajectories are at least (l+2)n timesteps long using a pol-
icy that is CE-learnable, then, as the number of trajectories
K grows, the parameter estimates computed by the CE al-
gorithm will converge in probability to the true parameters
of that cPLG.

We defer the proof until Appendix A.5.

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

-2
-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

 100 1000 10000 100000L
o
g
 L

ik
el

ih
o
o
d
 D

if
fe

re
n
ce

(P
er

 T
ra

je
ct

o
ry

)

Number of Trajectories

(a) Dimension = 2, Averaged over 81 runs

-7
-6
-5
-4
-3
-2
-1
 0
 1

 100 1000 10000 100000L
o
g
 L

ik
el

ih
o
o
d
 D

if
fe

re
n
ce

(P
er

 T
ra

je
ct

o
ry

)

Number of Trajectories

(b) Dimension = 4, Averaged over 80 runs

-10
-8
-6
-4
-2
 0
 2
 4

 100 1000 10000 100000

L
o
g
 L

ik
el

ih
o
o
d
 D

if
fe

re
n
ce

(P
er

 T
ra

je
ct

o
ry

)

Number of Trajectories

cPLG LDS test

(c) Dimension = 8, Averaged over 78 runs

Figure 1. Comparison of parameter estimation using EM with
LDS and CE with cPLGs. Higher values indicate higher like-
lihood in the learned parameters; at zero, the likelihood of the
learned parameters is identical to that of the generating parame-
ters. Results on the test sets are offset on the horizontal axis.

4.3. Experimental Results

We compare Consistent Estimation for cPLGs to Expecta-
tion Maximization for LDSs (Ghahramani & Hinton, 1996)
by generating datasets using random test systems, training
models on the datasets using both algorithms, and compar-
ing the likelihood of the data using the trained models. We
found that CE outperformed EM, though there were a few
errors with smaller datasets.

The test systems were LDSs with parameters generated
randomly as by Rudary et al. (2005); B was generated in
the same manner as H . Systems were generated with di-
mensions (n) of 2, 4, and 8, each with a 1-dimensional
action. These systems were then used to create datasets
with 100,000 trajectories, each of which was of length 5n.
For each of these datasets, we trained cPLGs and LDSs
using the first 100, 1000, 10,000, 50,000, and 100,000 tra-
jectories. The LDSs were trained using the EM software
made available by Ghahramani (2002); EM stopped once
the likelihood of the data changed less than 0.01% between
iterations or once 1000 iterations had been completed. The
plots in Figure 1 report the average error measure lt−la

K vs

K, where lt is the log-likelihood of the data with the trained
parameters, la is the log-likelihood of the data given the ac-
tual parameters, and K is the number of trajectories used
to train the model, with error bars showing one standard
deviation. We reported the results both for the training data
and for a test dataset of 10000 trajectories generated by the
same model as the training set.

The update of Σt was modified from (3). Because of the na-
ture of the CE algorithm and the cPLG model, the standard
covariance update sometimes yields a matrix that is not
positive semidefinite. When this occurred, 10I was added
to Σt. This was occasionally necessary for smaller values
of K, rarely for larger. The dips in accuracy at K = 10000
in 1(a) and 1(c) reflect a single dataset each for which this
was necessary. These errors are offset by the superior per-
formance of CE, particularly on the larger datasets. On all
three model sizes considered, the likelihood of the data by
the cPLGs approached the true likelihood as the training set
increased in size, as would be expected given Theorem 4.
On the other hand, the performance of EM did not appear
to improve as the dataset grew.

5. Conclusion
We have introduced the controlled predictive linear-
Gaussian model, a predictive state representation of
discrete-time dynamical systems with real-valued obser-
vations and vector-valued actions. We have shown that
n-dimensional cPLGs subsume n-dimensional linear dy-
namical systems while requiring fewer parameters.We have
also introduced the predictive linear-quadratic Gaussian
problem, a cost-optimization problem based on cPLGs. We
showed that the optimal action in a cPLG under a quadratic
cost function is the certainty equivalent optimal action, and
a linear function of the state. We have shown an equiva-
lence between the PLQG and LQG problems. Finally, we
have proposed a consistent parameter estimation algorithm
for cPLGs, CE, and shown that it compares favorably to
EM for LDS models in experiments.

While these are promising early developments, work re-
mains to be done. First, outperforming EM on random
problems indicates that CE and cPLGs show promise, but
this is not the gold standard; EM is particularly useful for
refining parameters in an “almost known” LDS, for exam-
ple, and other parameter estimation algorithms exist. Sec-
ond, the invalid models that are sometimes learned with
small datasets are worrisome, as well as the fact that CE
cannot be used to estimate parameters from a single (long)
trajectory, as EM can be. Thus, a new (or modified) pa-
rameter estimation algorithm is an important area of future
work—we are exploring a maximum likelihood algorithm.
Another area of future work is the development of a PLG
model that allows vector-valued observations; PLGs could

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

then model anything that an LDS with Gaussian noise can.

Acknowledgements

The authors would like to thank David Wingate for en-
lightening conversations. This work is supported by the
National Science Foundation under Grant Number IIS-
0413004 and by a grant from Intel Corp. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation
or of Intel.

References
Catlin, D. E. (1989). Estimation, control, and the discrete

Kalman filter. Springer-Verlag New York.

DeGroot, M. H., & Schervish, M. J. (2002). Probability
and statistics. Addison Wesley.

Ghahramani, Z. (2002). Machine learning toolbox v1.0
[Computer software]. Retrieved February 16, 2005,
www.gatsby.ucl.ac.uk/˜zoubin/software/ lds.tar.gz.

Ghahramani, Z., & Hinton, G. E. (1996). Parameter es-
timation for linear dynamical systems (Technical Re-
port CRG-TR-96-2). Dept. of Computer Science, U. of
Toronto.

Jaeger, H. (1997). Observable operator models II: Inter-
pretable models and model inductions (Arbeitspapiere
der GMD 1083). GMD, St. Augustine.

Ljung, L. (1987). System identification: Theory for the
user. Prentice-Hall, Inc.

Rudary, M., Singh, S., & Wingate, D. (2005). Predictive
linear-Gaussian models of stochastic dynamical systems.
UAI 21.

Singh, S., James, M. R., & Rudary, M. (2004). Predic-
tive state representations: A new theory for modeling
dynamical systems. UAI 20.

Welch, G., & Bishop, G. (2004). An introduction to the
Kalman filter (Technical Report TR 95-041). U. of N.
Carolina at Chapel Hill, Dept. of Computer Science.

Wolfe, B., James, M. R., & Singh, S. (2005). Learning pre-
dictive state representations in dynamical systems with-
out reset. ICML 22.

A. Appendices
A.1. State Update

Recall that µt = E[Zt|ht, ut+1 = 0, ut+2 = 0, . . .] and
Σt = Var[Zt|ht, ut+1 = 0, ut+2 = 0, . . .]. To update the

state, we must account for two new pieces of information:
the selection of an action and a new observation. In order
to compute the full update, we will first compute the distri-
bution of Zt+1 given the new action ut+1 = u.

Because the actions have a linear effect on the observations,
we can write the difference in expectation given ut+1 = u
as opposed to ut+1 = 0 as a linear function of u:

Liu = E[Yt+i+1|ht, ut+1 = u, ut+2 = 0, . . .]
− E[Yt+i+1|ut+1 = 0, ut+2 = 0, . . .],

where Li is a 1 × l row vector. We can write a recursive
definition for Li:

Li = Γ′n−i +
i−1∑
j=1

gn−i+j+1Lj . (4)

Since Zt+1 = GZt + ηt+n+1en, we can write its distribu-
tion as a function of the state variables µt and Σt:

Zt+1|ht, ut+1 = 0, . . . ∼ N (Gµt, GΣtG
′ + F).

In order to update the conditional distribution to take the
new action ut+1 = u into account, the mean must be
changed to Gµt+Lu, where L is the n×l matrix whose ith
row is given by Li. The action does not affect the variance.
Now we can write the joint distribution of Yt+1 and Zt+1:(

Yt+1

Zt+1

)∣∣∣∣ ht, ut+1 = u, ut+2 = 0, . . .

∼ N
((

e′1µt

Gµt + Lu

)
,

(
e′1Σte1 f ′t

ft GΣtG
′ + F

))
.

Since Yt+1 and Zt+1 are jointly Gaussian, we can apply a
standard result (e.g., Catlin, 1989) to compute the distribu-
tion conditioned on observing Yt+1 = yt+1:

Zt+1|ht, Yt+1 = yt+1, ut+1 = u, ut+2 = 0, . . .

∼ N (µt+1,Σt+1),

where µt+1 and Σt+1 are defined as in (2) and (3). Thus,
we have derived these state updates.

A.2. The LDS

An LDS models a system with two sequences of random
variables; Yt is the real-valued5 observation at time t, and
Xt is the (unobserved) n-vector of state at time t. The sys-
tem is regulated by actions; the l-vector action ut has an
additive linear effect on state variable Xt+1.

The initial state X1 is normally distributed:

X1 ∼ N (x̂−1 , P−1). (5)

5The LDS formalism allows vector-valued Yt as well, but we
restrict our attention to scalar Yt.

Predictive Linear-Gaussian Models of Controlled Stochastic Dynamical Systems

Each subsequent state vector is computed as a linear func-
tion of the previous state with additive Gaussian noise, plus
a linear function of the action:

Xt+1|Xt = xt, ut ∼ N (Axt + But, Q). (6)

Finally, the observation is a noisy linear function of Xt:

Yt|Xt = xt ∼ N (Hxt, R). (7)

Because Xt is unobservable, an LDS is tracked by the
Kalman filter, which maintains a state estimate x̂−t and a
covariance matrix P−t . The semantics of these variables
is that Xt|ht−1 ∼ N (x̂−t , P−t); consult Welch and Bishop
(2004) for details.

A.3. Proof of Theorem 1

We prove that every n-dimensional controlled LDS has an
equivalent n-dimensional cPLG by constructing a cPLG
given an n-dimensional LDS with parameters A, B, H ,
Q, R, x̂−1 , and P−1 . Because of the additive linear effect of
the actions and the fact that µt is conditioned on future ac-
tions being 0, the parameters shared with the original PLG
remain unchanged:

µt = Mx̂−t+1, Σt = MP−t+1M
′ + Ψ + RI,

C = Ψn+1 −Ψg −Rg,

σ2 = HSnH ′ + R− g′Ψn+1 − g′C,

and g is any solution to g′M = HAn, where

M =


H

HA
...

HAn−1

 , (8)

Ψij =

{
HAi−jSj−1H

′ 1 ≤ j < i

HAj−iSi−1H
′ i ≤ j ≤ n

,

Si =
i∑

k=1

Ak−1Q(Ak−1)′,

and Ψi
n+1 = HAn+1−iSi−1H

′, where Ψi
n+1 is the ith el-

ement of the n-vector Ψn+1 (Rudary et al., 2005).

The only parameter yet to find is Γ (or, equivalently, L). We
can compute L as follows (suppressing some of the condi-
tions for readability and space):

L1u = E[Yt+1|ut+1 = u]− E[Yt+1|ut+1 = 0]
= HBu

Thus, L1 = HB. Similarly, we obtain L2 = HAB. Com-
bining these with similar results for L3, L4, . . ., we obtain
L = MB. To compute Γi, solve (4).

Using these parameters, we obtain identical distributions
over observations from the original LDS model and the new
cPLG model, thus proving the result.

A.4. Proof of Theorem 3

We wish to show that any full-rank, n-dimensional LQG
has an equivalent n-dimensional PLQG. By Theorem 1,
there is a cPLG equivalent to the LDS; thus we need only
show that an equivalent cost function exists, which we
show by construction.

Since M is invertible, the following identities obtain: x̂−t =
M−1µt−1, B = M−1L, and M−1G = AM−1. The
cost-function parameters of the PLQG are derived from
the LQG’s cost function parameters as follows: Wµ,f =
M ′−1Wx,fM−1, Wµ = M ′−1WxM−1, and Wµ,u =
Wx,uM−1 (Wu is the same in the PLQG as in the LQG).
The cost-function structure of LQGs is similar to PLQGs;
we write the optimal expected cost-to-go at time t given
ht−1 as Jx

t (ht−1) = x̂−t
′V x

t x̂−t + vx
t and V µ

T+1 = Wx,f .
Suppose that V µ

t+1 = M ′−1V x
t+1M

−1. Then

V µ
t = M ′−1WxM−1 + GM ′−1V x

t+1M
−1G−

(M ′−1W ′
x,u + G′M ′−1V x

t+1M
−1L)×

(Wu + L′M ′−1V x
t+1M

−1L)−1 ×
(Wx,uM−1 + L′M ′−1V x

t+1M
−1G)

= M ′−1[Wx + A′V x
t+1A−

(W ′
x,u + A′V x

t+1B)(Wu + B′V x
t+1B)−1 ×

(Wx,u + B′V x
t+1A)]M−1,

which means µ′t−1V
µ
t µt−1 = x̂−t

′V x
t x̂−t , so the expected

optimal cost-to-go differs by a history-independent con-
stant. It follows that both models select the same action.

A.5. Proof of Theorem 4

The proof of CE’s consistency depends on the following
result from statistics: If x̂n

−→p x as n →∞, and f : Rk →
Rm is continuous at x, then f(x̂n) −→p f(x) as n → ∞
(e.g., p. 234 of DeGroot & Schervish, 2002).

It follows from the weak law of large numbers that ηt
−→p 0

for all t. From this it follows that Ξγ −→p Υ. Rudary
et al. (2005) showed that this can be rewritten as γ̂ =
(Ξ′Ξ)−1Ξ′Υ −→p γ when (Ξ′Ξ)−1 is defined in the limit.

Since γ̂ is consistent, L̂ is as well (from the result stated
above). From this and the fact that yt

−→p E[Yt|u1 =

u1, . . .] we get µ̂0
−→p µ0. Likewise, ÊY

k

t
−→p E[Yt|u1 =

uk
1 , . . .], so Σ̂0 is just a sample covariance, which is a well-

known consistent estimator. Similarly, σ̂2 and Ĉ are a sam-
ple variance and sample covariance, respectively, and thus
are consistent estimators.

