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Abstract

Reminder systems support people with impaired prospective
memory and/or executive function, by providing them with
reminders of their functional daily activities. We integrate
temporal constraint reasoning with reinforcement learning
(RL) to build anadaptivereminder system and in a simulated
environment demonstrate that it can personalize to a user and
adapt to both short- and long-term changes. In addition to
advancing the application domain, our integrated algorithm
contributes to research on temporal constraint reasoning by
showing how RL can select an optimal policy from amongst
a set of temporally consistent ones, and it contributes to the
work on RL by showing how temporal constraint reasoning
can be used to dramatically reduce the space of actions from
which an RL agent needs to learn.

Introduction
Reinforcement learning (RL) has been successfully applied
to a number of problems in control and operations research,
but there have been relatively few applications to the de-
sign of human-computer interaction (HCI) systems; no-
table exceptions are Singhet al. (2002) and Roy, Pineau,
& Thrun (2000). We describe the use of RL and tempo-
ral constraint reasoning to induce an effective interface for
a cognitive orthoticsystem—a system intended to support
people with impaired memory and/or executive function, by
providing suitable reminders of functional daily activities.
The goal of such systems is to increase the autonomy of
cognitively impaired persons, allowing them to be more self-
sufficient and/or to maintain self-sufficiency longer. These
systems must have interfaces that are extremely intuitive and
straightforward, and hence the timing and content of the in-
teractions must be carefully considered. Moreover, because
people differ from one another in many regards, and because
even an individual user will change over time—particularly
if she has progressive cognitive decline—the interactions
must bepersonalizedto the needs of the user, andadap-
tive to both short- and long-term changes in those needs.
We modify Autominder (Pollacket al. 2003), a schedule-
management system that models and maintains status infor-
mation about the user’s plan of daily activities, processes in-
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formation obtained from sensors to infer whether and when
activities have been performed, and reasons about discrep-
ancies between the user’s plan and what she has been ob-
served doing and determines what reminders to issue. In the
version of Autominder currently being used in field tests, a
hand-crafted reminder strategy is used; we make this strat-
egy adaptive.

We have therefore adopted an approach of learning ef-
fective strategies for interacting with the user of a cognitive
orthotic system. Specifically, we use RL to induce an in-
teraction policy, i.e., a function from features of the current
state to interface actions, including if and when to issue a
reminder to perform a certain activity. From the perspective
of RL, there is at least one rather unusual and interesting
challenge in building adaptive cognitive orthotic systems. In
general in RL systems, the set of actions available in every
state is either fixed or quite easy to determine. In contrast,
in our application, determining the set of actions available in
the current state is itself an NP-hard problem. At any point
in time, the set of legitimate actions depends on the history
of the user’s activities so far as well as on the details of the
user’s daily plan, which in general will contain a number of
complex temporal constraints; extracting these actions from
the plan is computationally hard. Although in principle we
could specify that the fixed set of actions for every state is
the collection of all possible reminders that the system might
take at any time during the day, in practice this approach
is highly inefficient. We therefore integrate two powerful
technologies: constraint-based temporal reasoning, which
employs powerful heuristics and pruning strategies to effi-
ciently determine what actions are legitimate in the current
state, and RL to learn from experience which of the legiti-
mate actions is optimal there.

In a series of experiments with a simulated user and envi-
ronment, we demonstrate that our approach results in a per-
sonalized and adaptive cognitive orthotic system. In addition
to our contribution to the application domain, our integrated
learning algorithm also contributes to research on tempo-
ral constraint reasoning by showing how RL can be used to
select an optimal policy from among temporally consistent
ones, and it contributes to the work on RL by showing how
temporal constraint reasoning can be used to dramatically
reduce the space of actions from which an RL agent needs
to learn.



RL-Based System Architecture
To address the limitations of a hand-crafted reminder strat-
egy, we employ RL to infer an optimal interaction policy
for each user of the cognitive orthotic system. For the most
part, our agent conforms to a standard RL architecture (e.g.
Sutton & Barto, 1998): the agent observes its environment
(the user) with sensors and performs actions within its en-
vironment (by issuing reminders). It also receives a reward
signal1 to drive its behavior. However, we depart from the
standard architecture by introducing an action proposer.

At the start of a day, the system is given the user’s plan,
i.e., a record of all activities the user is supposed to perform,
along with constraints on the times of their performance.
The action proposer has to compute which activities, if any,
the user can do at each time step while still allowing the
remaining activities to be done without violating any con-
straints (that are not already violated). This is a challenging
task and we adapt Autominder’s plan manager to this end.
The plan manager reasons about the plan and the user’s ac-
tivities, and can be used to determine a set of legally exe-
cutable user actions. The action proposer transforms these
user actions into a set of allowable reminders, and adds a do-
nothing action to the set. These actions become candidates
for the agent, which then selects and executes one.

Experiments
We performed experiments using a simulator to model both
a user and the sensors that detect that user’s activities. We
designed the simulator so that we could vary how often each
activity is forgotten, when activities are executed if remem-
bered, and how the user responds to reminders. The sensors
detect when each activity is started and finished.

In each experiment, we used function approximation-
based Q-learning (Watkins 1989) to train a separate linear
neural network for each activity in the user’s plan, plus one
network for the do-nothing action. The inputs to these net-
works are features extracted from the user’s plan and its state
of execution. These experiments and their results are de-
scribed in detail by Rudary, Singh, & Pollack (2004).

One of these experiments, whose results are shown in Fig-
ure 1, showed that the adaptive Autominder is able to adapt
to long-term changes in the cognitive ability of a user. The
bottom half of the figure shows the probability that the user
forgets each of the four activities in a simple plan, over the
course of 250 days. This profile may be seen in a patient
who, for example, has a mild stroke at day 50, and thereafter
enters a period of steady cognitive decline. In this experi-
ment, the agent was trained every ten days using the prior
50 days of experience, and the agent acted according to an
ε-greedy policy (where it chooses the action that currently
looks best with90% probability and a random action the
rest of the time). The top half of Figure 1 shows the reward
obtained each day, averaged over 10 runs of the experiment

1Our two goals drive the choice of reward function. We wish to
maximize compliance, so we give positive reward (+2.0) every time
the user correctly completes an activity. We also want to minimize
dependence on the orthotic, so we charge a fixed cost (-0.6) for
each reminder issued.
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Figure 1: Results for the long-term adaptation experiment.

and then smoothed by averaging together the results of 15
consecutive days. The dashed line shows the expected value
of the optimal policy; adaptive Autominder is somewhat be-
low this because of itsε-greedy strategy. However, we see
that the agent adapts to the changing behavior readily.

Conclusion
Our experiments show that a combination of RL and tem-
poral constraint reasoning can produce a cognitive orthotic
system that is personalized and adaptive to both short- and
long-term changes in a user. The next step in this research
trajectory is to deploy this adaptive Autominder system in
field studies with real users. One issue that must first be
addressed is the length of time required to produce a reason-
able policy; in some of our experiments, as much as 30 days
of data were required. Another interesting area of continued
work involves generalizing the interaction policy we learn
from a particular plan to other plans for the same user.
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