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Abstract

Modeling dynamical systems, both for con-
trol purposes and to make predictions about
their behavior, is ubiquitous in science and
engineering. Predictive state representations
(PSRs) are a recently introduced class of
models for discrete-time dynamical systems.
The key idea behind PSRs and the closely
related OOMs (Jaeger’s observable opera-
tor models) is to represent the state of the
system as a set of predictions of observ-
able outcomes of experiments one can do
in the system. This makes PSRs rather
different from history-based models such as
nth-order Markov models and hidden-state-
based models such as HMMs and POMDPs.
We introduce an interesting new construct,
the system-dynamics matrix, and show how
PSRs can be derived simply from it. We
also use this construct to show formally that
PSRs are more general than both nth-order
Markov models and HMMs/POMDPs. Fi-
nally, we discuss the main difference between
PSRs and OOMs and conclude with direc-
tions for future work.

1 Introduction

Modeling dynamical systems, both for control pur-
poses and to make predictions about their behavior, is
ubiquitous in science and engineering. Different disci-
plines often develop different mathematical formalisms
for building models—differential equations in physics,
finite-automata in computer science, logic and graphi-
cal models in artificial intelligence (AI), sequential de-
cision processes in operations research (OR); these are
but a few examples. Often the differences among the
formalisms are motivated by properties of the class of
dynamical systems of interest to the different fields. In

this paper, we are exclusively interested in the class of
general discrete-time, finite-observation, and stochas-
tic dynamical systems. This class includes many of
the problems of interest to the AI subfields of machine
learning, reinforcement learning (RL), and planning.
At the heart of current research in these subfields are
hidden Markov models (HMMs) and their controlled
counterparts partially observable Markov decision pro-
cesses (POMDPs). Recently, Littman, Sutton, and
Singh (2001) proposed a new class of models called
predictive state representations (PSRs) as an alterna-
tive to HMMs and POMDPs.

The key idea behind PSRs, and the closely related ob-
servable operator models or OOMs (Jaeger, 1997), is
to represent the state of the system as a set of predic-
tions of observable outcomes of tests or experiments
one could do in the system. Thus, unlike hidden-
state-based POMDP models PSRs are expressed en-
tirely in terms of observable quantities. Learning PSR
models of dynamical systems from observation data
should therefore be easier and less prone to local min-
ima problems than learning POMDP models from ob-
servation data (Shatkay & Kaelbling, 1997). At the
same time PSRs do not have the severe limitations of
history-based nth-order Markov models, another class
of models of dynamical systems based on purely ob-
servable quantities. Recent work on PSRs has begun
to theoretically and empirically explore these advan-
tages (Singh, Littman, Jong, Pardoe, & Stone, 2003).

In this paper we present a new and more comprehen-
sive theory of PSRs than was available heretofore. The
original development of PSRs by Littman et al. (2001)
focused on their relationship to POMDPs and in par-
ticular showed how to convert a POMDP model to
a PSR model. Here we present a new mathemati-
cal construct, the system-dynamics matrix (D), that
can be used to describe any controlled or uncontrolled
dynamical system. This matrix D is not a model of
the system but should be viewed as the system itself.
We define the linear dimension of a dynamical sys-



tem as the rank of its system-dynamics matrix. We
use D to re-derive predictive state representations in a
more general way than the derivation in Littman et al.
(2001). We prove that dynamical systems with linear
dimension n can always be modeled by PSRs of size n
but that there exist such systems that cannot be mod-
eled by any finite HMM/POMDP and any finite-order
Markov model. Finally, we discuss the relationship be-
tween PSRs and the earlier work on OOMs by Jaeger
(1997).

2 The System-Dynamics Matrix

An uncontrolled dynamical system can be viewed ab-
stractly as a generator of observations. At time step
i, it produces an observation oi from some set O. The
system itself can be viewed as a probability distri-
bution over all possible futures of all lengths. A fu-
ture is just a sequence of observations from the be-
ginning of time. The prediction of a length-k fu-
ture t = o1o2 . . . ok, denoted p(t), is the probabil-
ity that the first k observations are precisely t, i.e.,
p(t) = prob(o1 = o1, . . . , ok = ok) where oi is the ac-
tual observation at time step i. A controlled dynami-
cal system, on the other hand, takes inputs from some
set A and generates observations from set O. Thus a
future in a controlled system is a sequence of action-
observation pairs from the beginning of time. Again
the system itself can be viewed as a probability distri-
bution over all possible futures, but in this case condi-
tional on the actions input to the system. Accordingly,
a prediction for a length-k future t = a1o1 · · · akok

is the probability that the first k observations are
o1 · · · ok given that the first k actions are a1 · · · ak, i.e.,
p(t) = prob(o1 = o1, . . . ok = ok|a1 = a1, . . . ak = ak),
where ai is the actual action at time step i. In con-
trolled systems it is convenient to think of futures as
tests or experiments one can do on the system. Thus,
for test t the prediction p(t) is the probability of that
test succeeding, i.e., of observing t’s sequence of obser-
vations upon doing t’s sequence of actions. Hereafter,
we will refer to futures as tests for both controlled and
uncontrolled systems.

Given an ordering over all possible tests t1t2 . . ., the
system’s probability distribution over all tests, defines
an infinite system-dynamics vector d, such that the
ith element of d is the prediction of the ith test in
the ordering, i.e., di = p(ti). Throughout, we will as-
sume that the tests are arranged in order of increasing
length and within the same length in lexicographic or-
der. Figure 1a) presents a pictorial view of the vector
d. The predictions in d have the following properties,
illustrated in Figure 1b:

• ∀i 0 ≤ di ≤ 1

1 1 1 1 1 2 1 1 1 n1 2 1 n 1 1 1 1

)
p( p() ) ) p(

)
p(

)
p(p(

b)

a)

...p(t ) p(t )

t t t t

... ...
t

p(t )p(t )

n1 k k+1 k+2

p(t    )
k+1

p(t     )
k+2

tests of length 1 tests of length 2

... ... ... ...

Σ = 1 Σ

t

oa a o a o
a o

a o
a o

a o
a o

oaoaoaoaoaoaoaoaa

2

o

a o2

1 n

1 1

1 2

1 1

1

1 11 1 1 1 n

1

1 2 k n

Figure 1: a) Each of d’s entries corresponds to the
prediction of a test. b) Properties of the predictions
imply structure in d.

• Let T (ā) be the set of tests whose action sequences
equal ā. Then ∀k ∀ā ∈ Ak,

∑
t∈T (ā) p(t) = 1

• ∀t∀a ∈ A, p(t) =
∑

o∈O p(tao)

These properties imply that the infinite system-
dynamics vector d has a good deal of structure. One
way to make this structure explicit is to consider a ma-
trix, D, whose columns correspond to tests and whose
rows correspond to histories (see Figure 2). In an un-
controlled system a history is the sequence of observa-
tions from the beginning of time while in a controlled
system a history is the sequence of action-observation
pairs from the beginning of time. The interpretation is
that a history is a future or test that has already hap-
pened. We define a history-conditional prediction for a
test t = a1o1 · · · akok given a history h = a1o1 · · · ajoj ,
as p(t|h) = prob(oj+1 = o1, . . . , oj+k = ok|h, aj+1 =
a1, . . . , aj+k = ak). The history-conditional prediction
in the uncontrolled case can be defined analogously.
We define an ordering over histories h1h2 . . . similar
to the ordering over tests, though we include the zero-
length or initial history, φ, as the first history in the
ordering. Then

Dij = p(tj |hi) =
p(hitj)
p(hi)

, (1)

and each row of D has the same properties as d had. In
fact, the system-dynamics vector d is the first row of
the matrix D (see Figure 2). The matrix D with its in-
finitely many rows and columns is uniquely determined
by the vector d because both the numerator and the
denominator of the rightmost term in the above equa-
tion are elements of d. We call D the system-dynamics
matrix.
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Figure 2: The rows in the system-dynamics matrix
correspond to all possible histories (pasts), while the
columns correspond to all possible tests (futures). The
entries in the matrix are the probabilities of futures
given pasts.

Because uncontrolled systems can be viewed as special
cases of controlled systems in which there is only one
action available, we will develop and present our re-
sults below for the controlled case. All of our results
apply to the uncontrolled case unless noted otherwise.

3 Models

We emphasize that the system-dynamics matrix is not
a model of the system; rather it is the system itself.
Indeed, we will use D and dynamical system inter-
changeably. In other words, D places no constraints
on the dynamical system at all other than our start-
ing assumptions of discrete-time and finite actions and
observations; for example, there is no assumption of
stationarity of any sort. The matrix D forms the basis
of our new theory of PSRs.

We begin by defining the concept of the linear dimen-
sion of a dynamical system as the rank of its corre-
sponding system-dynamics matrix. The linear dimen-
sion of a system is equal to the dimension of the system
as defined by Jaeger (1998) and, in the uncontrolled
case, the minimum effective degree of freedom as de-
fined by Ito, Amari, and Kobayashi (1992). We will
show why the rank of D corresponds to a linear rather
than nonlinear dimension later in this paper. But first,
we remark that the rank of D is a measure of the com-
plexity of the dynamical system and thus we should
expect that a model of the dynamical system should
have a complexity that is a function of the linear di-
mension.

Traditionally, a model of a dynamical system is some-
thing that can be used both as a simulator—to gen-
erate sequences of observations given sequences of

actions—and as a predictor—to maintain state and
make predictions about future behaviors while inter-
acting with a system. In our context, an equivalent
definition is that a model is something that can gener-
ate the system-dynamics matrix exactly. Most models
are composed of the following pieces: a state represen-
tation that is a sufficient statistic of history, a specifi-
cation of the initial state, and model parameters and
update function that together define how the model
updates the state as actions get taken and observa-
tions noted.

Before we derive a PSR model of a dynamical sys-
tem from D, we consider the relationship between
nth-order Markov models and D and then between
HMMs/POMDPs and D.

3.1 History-Based Models

An nth-order Markov model makes the assumption
that the next observation probabilities are condition-
ally independent of the history given the last n action-
observation pairs. The state of such a system in history
h, denoted s(h), is represented by the length-n suffix of
h; the initial state is the suffix that is equivalent to the
null history. There are k = (|A||O|)n possible states.
The parameters of this model are the k|A||O| observa-
tion probabilities, arranged into |A| matrices {Oa},
where Oa

ij = prob(oj |s(hi), a). The state is main-
tained simply; when a new action-observation pair is
observed, the state is updated to the length-n suffix of
the new history.

Generating D from this model is straightforward: us-
ing the chain rule, p(a1o1 · · · anon|h) is given by com-
puting prob(on|ha1o1 · · · an−1on−1an) · · · prob(o1|ha1).
Each of the probabilities in the product is obtained di-
rectly from the parameter matrices {Oa} by mapping
histories to states by using length-n suffixes.

But how complex a dynamical system can be modeled
by a nth-order Markov model? In other words, what is
the maximal rank of D that can be generated by such
a model?

Theorem 1 The dynamical system corresponding to
an nth-order Markov model cannot have linear dimen-
sion greater than k = (|A||O|)n.

Proof Given that an nth-order Markov model can-
not distinguish between any two histories that have
the same length-n suffix, it is clear that the D ma-
trix generated by such a model cannot have more than
k = (|A||O|)n unique rows, and thus has rank at most
k. The rank and therefore the linear dimension of the
D generated by such a model is at most k. �

Later, we will show that there are systems with finite



linear dimension that cannot be represented by an nth-
order Markov model for any finite n. Intuitively, this
is because a matrix with finite rank may have infinitely
many distinct rows. Taken together, these results show
the known fact that nth-order Markov models are quite
limited in scope.

3.2 Models with Hidden States

POMDPs/HMMs are models based on the notion of
underlying hidden or nominal states and directly ad-
dress the limitations of history-based models. They
maintain state information by keeping track of the
probabilities of being in each of these nominal states
as a function of history. Thus, the state representa-
tion of a k-state POMDP is a k× 1 belief state vector
b(h), where bi(h) is the probability that the system is
in nominal state i given that history h has been ob-
served. The initial state is b(φ). The parameters of
this model are the transition probabilities of the un-
derlying MDP (that describes the unseen dynamics of
the nominal states) and the observation probabilities;
that is, a set of k× k stochastic matrices {T a}, where
T a

ij is the probability of transitioning from nominal
state i to nominal state j, and a set of k × k diag-
onal matrices {Oao} where Oao

ii is the probability of
observing o while leaving state i by means of action a.
Note that ∀a

∑
o∈O, Oao = I. The state is updated

by computing

b(hao) =
b(h)T aOao

b(h)T aOao1
.

D can be generated from a POMDP by generating each
test’s prediction as follows:

p(a1o1 · · · anon|h) = b(h)T a1
Oa1o1

· · ·T an

Oanon

1

Again, we ask what the linear dimension is of systems
that can be perfectly modeled by a POMDP.

Theorem 2 A POMDP with k nominal states can-
not model a dynamical system with dimension greater
than k.
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Figure 3: The system-dynamics matrix generated by
a POMDP model with k nominal states is the product
of an ∞× k matrix (B) and a k ×∞ matrix (U).

Proof Let p(t|si) be the prediction for test t gen-
erated by the POMDP for a belief state that assigns
probability 1 to the system being in nominal state si

(note that it need not be possible to manipulate the
system into such a belief state). Let U be the (k×∞)
matrix whose (ij)th entry is p(tj |si). U has k rows,
and so it has rank no more than k.

Now consider the D matrix generated by the POMDP.
The row of D corresponding to a history h is simply
bT (h)U , where b(h) is the belief state after observing
h. Thus D may be generated by computing the ma-
trix multiplication BU , where B is a (∞× k) matrix
with whose ith row is the belief state corresponding
to history hi (see Figure 3). Because both B and U
have rank no more than k, D has rank no more than
k. Thus, no dynamical system that can be modeled
by a POMDP with k nominal states may have a linear
dimension that is greater than k.

�

Because an HMM is simply a POMDP with a single
action, we can user Theorem 2 to assert:

Corollary 3 A HMM with k nominal states cannot
model a dynamical system with dimension greater than
k.

Although POMDPs are more expressive than nth-
order Markov models, there are dynamical systems
with finite linear dimension that cannot be modeled
by any finite POMDP. Jaeger (1998) presents an un-
controlled system that has a linear dimension of 3,
but that cannot be modeled by any finite HMM. We
do not repeat the construction here. And because
there are POMDPs that cannot be modeled by any
nth-order Markov model, it is the case that there are
systems with finite linear dimension that cannot be
represented by either a finite POMDP or an nth-order
Markov model for any finite n.

4 Predictive State Representations

We now derive PSR models directly from the system-
dynamics matrix. For any D with rank k, there must
exist k linearly independent columns and rows; these
will not be unique. Consider any set of k linearly
independent columns of D and let the tests corre-
sponding to those columns be Q = {q1 q2 · · · qk}. We
call the tests in Q the core tests (see Figure 4). Let
the submatrix of D that contains just the columns
for the core tests be denoted D(Q). The state rep-
resentation of the PSR model is the set of predic-
tions for the core tests. Thus, for any history h,
the state of the PSR model is given by the vector
p(Q|h) = [p(q1|h) p(q2|h) · · · p(qk|h)]. The initial state
is p(Q|φ), the entries of the first row in D(Q).
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Figure 4: The core tests of a PSR are selected by find-
ing k linearly independent columns of D.

Note that by the definition of rank of a matrix, all
the columns of D are a linear combination of the
columns in D(Q). In fact, for every test t, there ex-
ists a weight vector of length k, mt, such that D(t),
the column of D corresponding to test t, is given by
D(t) = D(Q)mt. This means that for any history h,
p(t|h) = p(Q|h)T mt; thus this PSR is called a linear
PSR. This allows us to compute a state update:

p(qi|hao) =
p(aoqi|h)
p(ao|h)

=
p(Q|h)T maoqi

p(Q|h)T mao

We can combine the entire update into a single equa-
tion by defining the matrices Mao, where the jth col-
umn of Mao is simply maoqj ; then the update is given
by

p(Q|hao) =
p(Q|h)T Mao

p(Q|h)T mao

Therefore the model parameters in a PSR are
{maoq}a∈A,o∈O,q∈Q and {mao}a∈A,o∈O. Note that the
model parameters may contain negative numbers in
them; this sets them apart from POMDP model pa-
rameters.

Finally, a PSR model generates D as follows: for
any test t = a1o1 · · · anon, its weight vector mt =
manonMan−1on−1 · · ·Ma1o1 (Littman et al., 2001) can
be computed from the model parameters and then
used to generate the column D(t).

Theorem 4 A dynamical system with linear dimen-
sion k can be modeled by a linear PSR with k core
tests.

Proof This follows from the derivation of PSRs
from D above. �

Because linear PSRs with k core tests generate predic-
tions for a test through a linear operation, they cannot
represent systems with linear dimension more than k.

Theorem 5 A linear PSR with k core tests can-
not model a dynamical system with linear dimension
greater than k.

Proof In a PSR with k core tests Q, the pre-
diction for any test t for a history h is given by
p(t|h) = p(Q|h)T mt for some weight vector mt. Thus
in the D matrix generated by the PSR, the column
corresponding to t, D(t), satisfies D(t) = D(Q)mt.
Thus, each column of D is a linear combination of the
k columns corresponding to the core tests, and D has
rank no more than k. �

Thus, there is an equivalence between systems of fi-
nite linear dimension and systems that are modeled
by linear PSRs with a finite number of core tests.

Theorem 6 Linear PSRs with k core tests are equiv-
alent to dynamical systems with linear dimension k.

Proof This follows from theorems 4 and 5. �

Why is it that linear PSRs can model a larger class of
dynamical systems than POMDPs? The main reason
is that the update parameters of a PSR are not con-
strained to be non-negative while the update parame-
ters of a POMDP are constrained to be non-negative.

5 Nonlinear Models

We defined the linear dimension of a dynamical system
as the rank of the D matrix because, as we showed in
deriving PSRs, there always exist a set of predictions of
that size that allowed linear computation of the predic-
tion for any test. In this sense the linear PSR state is a
linearly sufficient statistic of the history. There may of
course be a set of tests N = {n1 . . . nc} of size less than
|Q| whose predictions constitute a nonlinear sufficient
statistic, such that for all tests t, p(t|h) = ft(p(N |h))
for some nonlinear function ft. Note that it is crucial
that ft is independent of h, or else p(N |h) won’t be
a sufficient statistic. When such a nonlinear sufficient
statistic exists, a nonlinear PSR can be defined with
update function

p(ni|hao) =
p(aoni|h)
p(ao|h)

=
faoni

(p(Q|h))
fao(p(Q|h))

.

It is helpful to see an example system in which a non-
linear PSR models a system more compactly than a
linear PSR. Littman et al. (2001) created the float-
reset problem, a POMDP with 5 states, illustrated in
Figure 5. There are two actions and two observations.
The float action moves to the state on the right or left
with equal probability, and always results in observing
0. The reset action moves to the state on the far right.
If the system was already in that state, this results in
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Figure 5: The float-reset problem.

an observation of 1; otherwise, the observation is 0.
The system always starts in the far-right state.

Any linear PSR that models this system has (at
least) 5 core tests. One such PSR has the core tests
{r1, f0r1, f0f0r1, f0f0f0r1, f0f0f0f0r1}. Initially,
and after a reset action, the predictions for these core
tests are [1, 0.5, 0.5, 0.375, 0.375]. After a float ac-
tion, each prediction is shifted left one place, and the
last prediction is updated by p(f0f0f0f0r1|hf0) =
0.0625p(r1|h) − 0.0625p(f0r1|h) − 0.75p(f0f0r1|h) +
0.75p(f0f0f0r1|h) + p(f0f0f0f0r1|h).

A glance at the initial prediction vector suggests there
may be a pattern to the values that p(r1|h) takes on.
In fact, this is borne out by continuing the series; af-
ter the first transition (from 1 to 0.5), p(r1|h) takes on
the same value twice in a row as long as the float ac-
tion is repeated. This twice-repeated value decreases
monotonically and so p(r1|h) and p(f0r1|h) together
uniquely determine the index into this infinite series.
Therefore, one can always look up the new prediction
for p(f0r1|h) for a float action from the series. Even
though we have not shown the explicit nonlinear cal-
culation underlying the series, this argument suffices
to show that the predictions for these two tests con-
stitute a nonlinear sufficient statistic of the history.
Thus there exists a nonlinear PSR for float-reset with
the predictions for just two tests as state.

This can be taken further.

Theorem 7 There exist systems with nonlinear di-
mension exponentially smaller than their linear dimen-
sion.

Proof (Sketch) Rudary and Singh (2004) present
the rotate register system. This system is a k-bit ro-
tate register, but only the far-left bit is observable.
There are three actions: The register can be rotated
either to the left or the right, and the visible bit can
be “flipped” (i.e. changed from 0 to 1 or vice versa).
A POMDP that models this system requires 2k states,
and a linear PSR requires 2k core tests. However, a
nonlinear PSR can model this system using only k +1
core tests. Thus, there is a nonlinear dimension to this
system that is exponentially smaller than its linear di-
mension. See Rudary and Singh (2004) for details. �

6 PSRs and OOMs

So far we have shown that linear PSRs are more gen-
eral than two currently popular models in AI, namely
nth-order Markov models and POMDPs. In fact, PSRs
share many of their properties with Jaeger’s OOMs.
Jaeger (1998) has also developed many algorithms for
OOMs and thus it is critical to understand the rela-
tionship between OOMs and PSRs so that research in
PSRs can leverage existing work on OOMs correctly.
We provide a beginning to this understanding in this
paper.

Motivated by the fact that HMMs can be difficult to
learn from observations of a system, Jaeger (1997)
developed OOMs as an alternative model for uncon-
trolled dynamical systems.1 Subsequently, he ex-
tended OOMs to Input/Output OOMs (IO-OOMs),
which model controlled dynamical systems (Jaeger,
1998). In addition, Jaeger presented two versions each
of OOMs and IO-OOMs: an uninterpretable version,
in which the state vector has no interpretation, and
an interpretable version, in which the elements of the
state vector can be interpreted as predictions for a spe-
cial kind of test in the system. Uninterpretable OOMs
and IO-OOMs, while interesting, are not amenable to
learning algorithms and thus we will focus on the in-
terpretable versions of these models.

6.1 Interpretable OOMs for Uncontrolled
Systems

The state vector in an interpretable OOM for an un-
controlled system is the set of predictions for a special
set of tests. Consider all tests (as we defined them
for uncontrolled systems) of some fixed length m and
partition them into k subsets. Let each subset, so pro-
duced, be a union-test. The prediction of a union-test
is the sum of the predictions for the tests in the union.
Thus, for a given m and k, the state vector for an
OOM is a k-dimensional stochastic vector, i.e., for ev-
ery history h its state vector sums to one and each
entry in the state vector is a probability.

On the one hand, union-tests are more general than the
tests used in uncontrolled-PSRs because the former are
unions of the latter tests. On the other hand, union-
tests are less general than uncontrolled-PSR tests be-
cause they all have to be of the same length. In any

1The notation used in this paper to describe OOMs de-
parts somewhat from Jaeger’s in order to remain consistent
with the rest of the paper; instead of using a for actions, he
uses r, and instead of o for observations, he uses a. In addi-
tion, we use the terms action and observation as opposed to
Jaeger’s terms input and output, and define interpretable
OOMs and IO-OOMs in terms of tests instead of in terms
of characteristic events.



case, OOM states are always stochastic vectors while
PSR states have no such constraint. Given these dif-
ferences what is the relationship between OOMs and
uncontrolled PSRs?

Theorem 8 OOMs, both interpretable and uninter-
pretable, with dimension k are equivalent to uncon-
trolled PSRs with k core tests.

Proof A linear PSR with k core tests can model
any system with linear dimension ≤ k. Jaeger (1998)
proved that k-dimensional interpretable OOMs are
equivalent to k-dimensional uninterpretable OOMs,
which in turn are equivalent to uncontrolled dynami-
cal systems of linear dimension k. Thus, any system
that can be modeled by an uncontrolled linear PSR
with k core tests can be modeled by an interpretable
OOM of dimension k, and vice versa. �

So even though uncontrolled PSRs and interpretable
OOMs have slightly different forms for uncontrolled
dynamical systems, they are equivalent in power and
in fact we have developed efficient algorithms (we omit
these here for lack of space) for converting one to the
other. The result for controlled dynamical systems is
very different and we turn to that next.

6.2 Interpretable IO-OOMs for Controlled
Systems

As with OOMs, the state in an interpretable IO-OOM
is a vector of predictions for a special set of tests. Con-
sider all tests (as we defined them for controlled sys-
tems) of some fixed length m that share a particular
action sequence ā of length m. Partition this set of
tests into k union-tests. The prediction of a union-
test is again the sum of the predictions for the tests
in the union. Thus, for a given m, ā, and k, the state
vector for an interpretable IO-OOM is a k-dimensional
stochastic vector. The interesting constraint in inter-
pretable IO-OOMs is the requirement that all union-
tests share the same action sequence ā. This guaran-
tees a stochastic vector as state but, as we will show
below, places a crucial limit on the ability of inter-
pretable IO-OOMs to model general dynamical sys-
tems.

Theorem 9 There exist controlled dynamical sys-
tems with finite linear dimension that cannot be mod-
eled by any interpretable IO-OOM of any dimension.

Proof We prove this theorem by presenting such
a system. Figure 6 shows a POMDP with 4 nominal
states that cannot be modeled by any interpretable
IO-OOM. Recall (from Theorem 2) that any system
that can be modeled by a POMDP with k states has
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Figure 6: The POMDP representation of a system that
cannot be correctly represented by an interpretable
IO-OOM. The labels on the arcs are observations.

linear dimension ≤ k, and so the POMDP i nFigure 6
has a finite linear dimension.

The key property of this system is that predicting the
outcome of action a will not differentiate between nom-
inal states s2 and s3, while predicting the outcome of
action b will not differentiate between s1 and s3.

State s0 is the initial nominal state of the system. Both
actions produce the same transitions: When in nom-
inal state s0, the next nominal state is s1, s2, or s3

with equal probability. When in one of the other nom-
inal states, the next nominal state is s0. When mov-
ing from s0, both actions cause the same observations
to be emitted: oi when entering si. However, when
moving back to nominal state s0, each action causes
different observations. The observation emitted when
moving to s0 from s1 using action a is o4 and o0 oth-
erwise; when action b is executed, the observation is
o4 when leaving s2 and o0 otherwise.

It is easy to see that history provides enough informa-
tion to determine the state with certainty. At times
0, 2, 4, . . ., the system is in state s0; the observation
emitted by the system identifies the next state. Since
the observation emitted when returning to state s0 is
deterministic given the state and action, any complete
model of the system should predict perfectly the ob-
servations at times 1, 3, 5, . . ..

We now prove that no interpretable IO-OOM can
model this system. We start by showing that no in-
terpretable IO-OOM with an input sequence of length
1 can model the system and complete the proof by
showing that no longer input sequence is sufficient.

Let us start with the input sequence ā = a. There
are five observations, so there are five events that use
this as their action sequence. None of these events



has a different probability when starting in s2 than it
does when starting in s3. Thus the state vector for an
interpretable IO-OOM with input sequence a would
be the same when the system was in either of these
states, and would be unable to predict the observation
emitted when leaving those states using action b.

Similarly, an interpretable IO-OOM with input se-
quence ā = b would be unable to differentiate between
s1 and s3 and would not correctly predict the obser-
vation emitted when leaving those states using action
a.

Furthermore, no longer sequence is sufficient. Because
the system always returns to s0 on even time steps,
effectively resetting the system, knowing the behavior
of the system two time steps or more in advance does
not provide any information about the current state
of the system. Thus, no interpretable IO-OOM can
model this system. �

A corollary follows directly from theorems 4 and 9:

Corollary 10 There exist controlled dynamical sys-
tems that can be modeled by PSRs that cannot be mod-
eled by any interpretable IO-OOM; PSRs are more
general than interpretable IO-OOMs.

This severely limits the utility of IO-OOMs. Because
uninterpretable IO-OOMs are not verifiable in the
sense that they are not directly based on data pro-
duced by the system, it is difficult to infer them from
such data. In fact, the learning algorithm that Jaeger
(1998) presents for IO-OOMs only works for the inter-
pretable version.

7 Conclusion and Future Work

We have introduced the system-dynamics matrix, a
mathematical construct that provides an interesting
way of looking at discrete dynamical systems. Using
this matrix, we have re-derived PSRs in a very simple
way and showed that they are strictly more general
than both POMDPs and nth-order Markov models.
The original formulation of PSRs by Littman et al.
(2001), though it resulted in exactly the same model as
this derivation, was arrived at through POMDPs and
was therefore more limited and complex. In addition,
we have shown that there exist dynamical systems with
nonlinear dimension that is exponentially smaller than
the linear dimension of those systems. Finally, we
have shown that in the case of uncontrolled dynam-
ical systems, linear PSRs and interpretable OOMs are
equivalent, while in the case of controlled dynamical
systems, interpretable IO-OOMs are less general than
linear PSRs.

Taken together our results form the beginnings of a

theory of PSRs though, of course, much remains to
be done. We are currently pursuing the develop-
ment of general nonlinear models by attempting to
estimate the nonlinear dimension directly from the
system-dynamics matrix.
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