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Abstract

Models of dynamical systems based on pre-
dictive state representations (PSRs) are defined
strictly in terms of observable quantities, in con-
trast with traditional models (such as Hidden
Markov Models) that use latent variables or state-
space representations. In addition, PSRs have
an effectively infinite memory, allowing them to
model some systems that finite memory-based
models cannot. Thus far, PSR models have pri-
marily been developed for domains with discrete
observations. Here, we develop the Predictive
Linear-Gaussian (PLG) model, a class of PSR
models for domains with continuous observa-
tions. We show that PLG models subsume Linear
Dynamical System models (also called Kalman
filter models or state-space models) while using
fewer parameters. We also introduce an algo-
rithm to estimate PLG parameters from data, and
contrast it with standard Expectation Maximiza-
tion (EM) algorithms used to estimate Kalman
filter parameters. We show that our algorithm
is a consistent estimation procedure and present
preliminary empirical results suggesting that our
algorithm outperforms EM, particularly as the
model dimension increases.

INTRODUCTION
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state is unobserved (hidden), their parameters are typically
learned using the Expectation Maximization (EM) algo-
rithm. However, EM is only able to find parameters that
maximize the data’s likelihood locally, and may thus learn
an inaccurate model.

In contrast, the state of a model basedpoedictive state
representation§PSRs) (Littman, Sutton, & Singh, 2001) is

a set of statistics defined ovieiture observable outcomes.
PSRs have shown advantages over several traditional mod-
els: they are more expressive than HMMs (Jaeger, 1997,
Singh, James, & Rudary, 2004), and learning PSRs from
data may be more accurate than learning traditional mod-
els with hidden state (Wolfe, James, & Singh, 2005). An
advantage of PSRs over traditional memory-based meth-
ods such as autoregressive and history window/oiokder
Markov models is that PSRs with a finite set of statistics
about the future can model some domains that would re-
quire the memory-based models to use infinite memory.
However, thus far PSR models are limited to domains with
discrete observations.

We present a new PSR model class for continuous obser-
vations, the Predictive Linear-Gaussian model (PLG), and
show that it subsumes classical LDS models (including
Kalman filters and ARMA models), while using fewer pa-
rameters than an equivalent LDS of the same dimension.
We present a learning algorithm that estimates PLG pa-
rameters from data traces, and prove that, under certain
conditions, these estimators arensistent As the num-

ber of traces increases, the estimated parameters converge
in probability to their true values. This is in contrast to
the local-optima guarantees of the EM algorithm for LDSs.

In many domains of interest, such as speech recognitiony, algorithm’s stronger guarantees crucially exploit the

robot localization, and the stock market, we are INter-¢-ct that a PLG's state uses statistics of observable quanti-

ested in modeling a system that emits continuous Obseﬁes. We also present preliminary results suggesting that as

vations. Llnear_ Dynamical System models (LDSs), aISOthe data set grows, our algorithm learns PLGs that outper-
called Kalman filter models or state-space models, are ro

. . . . . Yorm LDSs learned via EM, particularly as the dimension
tinely used in control and prediction tasks in a wide vari- :

L . L ) of the models increases.
ety of applications spanning many disciplines. While these

mOdE|S are very useful when their parameters are_known 1Jaeger (1997) and Rivest and Schapire (1994) also developed
in advance, these parameters are not essilsned partic-

¢ TS al models based on predictions of future observable outcomes; PSRs
ularly as the model dimension increases. Because LDSdHave built on this earlier work.



2 THE PREDICTIVE Appendix A.2)? The state vector can retain information
LINEAR-GAUSSIAN MODEL about observations that are arbitrarily far in the past.

This infinite-memory property can be retained without
A model of a dynamical system allows one to make predicpositing unobservable state variables. Here, we develop
tions about future events given any history. This is the modsuch a model, the Predictive Linear-Gaussian model, and
eling problem: to find and represent structure in the systendhow that it is as powerful as the LDS model. A PLG model
in order to make predictions. We focus on modeling un-makes four assumptions about the structure of the system;

controlled dynamical systems that emit scalar, real-valuegs we state these assumptions, we develop the mathematics
observations at discrete time intervals. underlying the formal model.

One of the simplest models of this type is thedimen-  Qur first assumptioris that, for some finite:, the distri-
sional Autoregressive (AR) model, which posits that thepytion of all the future observations is completely charac-
observation at any time step is a linear combination of theerized by the distribution of the nextobservations. That
previousn observations plus an independent noise termis, the distribution of the: following observations serves as
LetY; be the random variable modeling the observation athe state of the system; equivalently, this distribution serves
time stept (y: will represent a realization of that variable). as asufficient statistidor history in this system. Note that

Then the AR model’s dynamics at timeés defined by this is not the n'"-order Markov assumption; state as full
N distributional information about theextn observations is
v, — s 1 quite different than state as knowledge of the acpaaitn
rs ot Z Pibje—i» @ observations.

=1

Our second assumptiois that all observations are jointly
distributed according to a multivariate Gaussian distribu-
tion. This an extremely useful restriction. The Gaus-
sian distribution has the conjugacy property; that is, if

A drawback to the AR model is that it has a finite memory: @ set of variablesX,, ..., X, are jointly Gaussian and
Given the history of observations up to timethe obser- X1 = 21 is observed, the new conditional distribution of
vations up to time — n no longer affect the dynamics of X2, ..., X,|X1 = 1 is also a multivariate Gaussian dis-

the system. That is, iB is any future event in the system, tribution. In addition, this distribution is Completely char-
Pr(Bly,....y) = Pr(Blyi—ni1,. .- yt)- acterized by its vector of means and its covariance ma-

o o trix; taken in combination with the previous assumption,
The LDS model addresses the finite-memory limitation by,ya can represent the state of the system at tirbg an

adding hidden state to the mix: The (unobserved) state vec;_yimensional mean vectgr, and ann x n covariance
tor ata particular time is a noisy linear function of the previ- 1 -+« %,. In particular, the first. observations are drawn

ous state vector, and the observation is a noisy linear funG,m 5 Gaussian distribution specified by the initial state.
tion of the state. Formally, leX; be the state vector attime | o Zy = [Yis1 -+ Yisn]T represent the, observations
- n

t. The initial state is drawn from a normal distribution with following timet. Then
meanz; and covariance’; :

wherea; ~ N(0,0% ) is the i.i.d. noise term ant (i, ¥0)
denotes the Gaussian distribution with meaand covari-
ance matrix:.

Zo ~ N(Mo, Eo).

The first assumption raises an implicit question: Given the
distributions of the next observations, how do we extend
that to the(n + 1)*? If we provide an answer to this ques-
tion, then we can use the current state to compute the dis-
Yi|X, = 2 ~ N'(Hay, R), 3) tribution for any future ob§er\{ation givep the obseryations
seen so far. The answer is given by ¢hird assumption

. o !
whereH is the linear mapping from the state vector to the 1€ (1 + 1)°* observation is a weighted sum of the next
observation, and is the variance of the noise. Finally, the ©PServations, plus a Gaussian noise term. However, we do

next state is a linear function of the current state, again witffiot @ssume that these noise terms are independent of one
mean-zero i.i.d. noise added: another. Formally, at timg,

X1 ~ N (@ P, @

The observation at timeis a linear function of the state,
plus mean-zero i.i.d. noise:

Yitnt1 =9 Z + Nent1, %)

wheren; . .1 models the noise in the system anid then-
whereA is the linear trend in the state space @pds the  dimensional vector that defines the linear trend in the sys-
covariance matrix of the noise. Because the state vector is 2These LDS equations can be extended to the case where the

unobservable, a distribution over underlying states must bgpservationsy;, are eachn-vectors; we restrict our attention to
computed; this is accomplished using the Kalman filter (se¢he case whersr = 1.

Xt+1|Xt =Tt~ N(Axn Q)a (4)



tem. The proper way to view (5) is as an extension of thestatistical properties of the nois€ @ndos?). Note that this
look-ahead horizon-+; andX; model the distribution of is a PSR; the state representation is the mean and variance
the nextn observations, while (5) allows us to extend the of future observations (that is, they are predictions about
distribution to observations that aferther in the future.  future outcomes given the observations seen so far).

We will see that the distribution of;, .., becomes impor-

tant when we observg and wish to update the state. It is instructive to contrast the AR model and the PLG

model. The dynamics of the two seem similar (compare
Thefourth assumptioiis that the distribution oy, 1|+ (1) and (5)). In fact, if we restrict a PLG such that its noise
does not depend upon the value pfvhereh;, is the history isi.i.d. (i.e. C = 0) and that its covariance matrix is sta-

of observations up to timg i.e. y1,y2, . .., y¢. Thatis, tionary (i.e. ¥; = X;Vi,j), they are equivalent. While
) the PLG may seem simple because it contains no “hidden
Netnt1lhe ~ N(0,07). (6)  state,” it is in fact as powerful as the LDS model, which

does have hidden state. The PLG’s representational power
comes from the fact that its noise terms covary with the
data; this gives it the infinite memory of the LDS—an ob-
servation can have an effect far in the future through the
chain of influence created by the correlation in the noise
terms. However, the similarities between PLGs and AR
As mentioned in the second assumption above, because thgodels are as important as their differences. The fact that
observations are drawn from a multivariate Gaussian distrip|_gs are defined exclusively in terms of observation data,
bution, we capture all information about the distribution of 535 are AR models, allows us to specify a consistent learning
the nextr observations with the vector of theirmeaps= zigorithm for PLGs (as we shall see in the next section).
E[Z;|h:], and their covariance matrix;; = Var[Z;|hy].
And because the distribution of the nextobservations Theorem 1 Any LDS withn-dimensional state and scalar
captures all information about the distributionadf future  opservations has an equivalemtdimensional PLG.
observationsy; andX:; are a sufficient statistic fdr;; that
is, u; and 3, compactly represent all information that is We defer the proof of Theorem 1 to Appendix A.3. Note
given by observing the system through time that ann-dimensional PLG has fewer parameters than an
n-dimensional LDS. Whil& |, P,, H, andR match up to
0, 2o, g, ando?, Q and A are larger thad. An LDS thus
(3n% — n)/2 more parameters than an equivalent PLG.

In addition, the covariance of;,,, 1 with then observa-
tions followingt is a constant vectar; i.e.

Cov|Zs, Neyn+1|he] = C. (7)

We can maintaing; and 3, with straightforward up-
date equations, again because of the Gaussian distributloﬁ
Given stateu; andY;, a historyh,, and a new observation
Yi+1 = ye+1, We can compute the new state matrices: The AR and ARMA (Autoregressive Moving-Average)
models are also widely used to analyze time-series data.

fi1 = Gy + Fyt+1T* elT“t, and (8) These models are strictly subsumed by LDS models, im-
€1 2te1 plying that PLGs strictly subsume them too.
- FFT
Vi1 =G5G + B - TS, (9 3 LEARNING PLGS
1 t

wheree; is theith column of then x n identity matrix, Given a corpus of data generated by a dynamical system,

we would like to estimate the parameters of a PLG that

2 T T T ~T
B =oene, +GCe, +enCT G, models that system. Defindrmceto be a sequence of ob-

F =GYe, + Cren, ;gryations emitted by a dynamical syst_em, starting from the
‘ initial state. Then we would like to estimate PLG parame-
a— ( 0 Ly ) ters givenk traces, with each trace containingobserva-
g’ ’ tions. But how shall we go about this?

C, isthe is the first element @, and/,,_, isthe(n—1) x ~ When it comes to model learning, PLGs have several po-
(n — 1) identity matrix. See Appendix A.1 for a proof that tential advantages over LDSs. First, PLGs have fewer pa-
these equations are the correct state updates; that is, thatmeters than LDSs of the same dimension. In addition,
tir1 = E[Zii1|he, yer1) andXi 1 = Var[Zepa|he, yeta]- the parameters of PLGs have a definite meaning with re-
spect to the data; for example, a PLG'% s the variance

Definition of a PLG  With the update equations (8) and of (Y;1,+1 — g7 Z;)|h:. On the other hand, an LDS®

(9), we can define the PLG model. The PLG is the models the covariance matrix for the latent variables, which is
whose state at timeis p; andX; and whose state update not directly related to the observation data. Finally, there is
equations are (8) and (9). The parameters of a PLG areo inherent symmetry in the PLG parameters; in an LDS,
the initial state (o and¥;), the linear trend(), and the two latent variables can be switched by swapping the ap-



propriate rows and columns i, @, A, 7z, andP; . This  Noise Parameters We estimateC' ando? by taking ad-
symmetry can cause problems for learning LDS models. vantage of the fact that they are statistical properties of the
noise termy;+,+1. Given an estimate qf, we can esti-
mate the n0|se term using its definition in (), ., =

F a1 — 1 27, wherezy is the vectorfyf , --- yr, 7.

hen we can estimat€' by the sample covariance of the
estimated noise with the preceding observations? can

be estimated by the sample variance of the noise estimates.
When computing statistics of the noise, we take advantage
of the fact thatt[r;4,,+1] = 0 for all ¢:

We propose a learning algorithm, which we call the Con-
sistent-Estimation (CE) algorithm, that relies upon the sec-
ond advantage, the meaning of the PLG parameters. Agai
suppose that we are given a dataset composéd éces,
with each trace containingy observations. Legf be the
t*" observation from thé" trace.

Initial State  The initial state matriceg,, and>y, are just
the mean and covariance of the firsbbservations. Thus,

N—-—n—1 K

they can be estimated by the sample mean and covarlance@ _ 1 ~k and (13
across all traces of these observations. That is, K(N —n)-1 ; kZ:l Yeilltnts (13)

(o) = Zyz (10) N-n—-1 K
7= K(N—n)-1 > 2 () (4

N 1 K t=0 k=1

(Zo)ij = o1 S i -w)wh -7, 11
k=1 These estimators areonsistentwhenever the system is

Note that these are unbiased estimators for the initial stateJMT: As the number of traces increases, they converge in
_ _ _ probability to the true parameters. That is, the probability

Linear Trend  The linear trend in the datg, can be es-  that they differ from the true parameters vanishes:

timated by taking advantage of the fact thatsithe lin-

ear trend. That isB[Y; 1] = Elg"Z] + Elli4n+1] = Definition 1 The sequencey,?,, ... converges tor in

9" E[Z;] (note that these areot conditioned on any his-  probability if lim,, ... Pr(|Z, — 2| > €) = 0 for every

tory). Here we have taken advantage of the fact thabosmvee We write this as £,, 5 = asn — 0o.”

Emi+n+1] = E[E[Mi4n+1|he]], by the smoothing property

of expectations. Regardless/aofs value, the inner expec- Tne |earing algorithm that computes the estimators de-
tation is 0, and s&[1;,+1] = 0. ThusI'g = A where fined by (10), (11), (12), (13), and (14) is called the Con-
E[Y1] e E[Y,] sistent Estimation (CE) algorithm.

= : : , and .
' ' Theorem 2 If a dynamical system can be modeled by an
EYy-n] -+ EYn-i] n-dimensional PLG, is UMT, and generates a training set
A = (B[Yypsa] - ElYAD". whose traces are at leag8t time steps long, then, as the

number of traceg< grows, the parameters computed by

These expectations are not known. However, we can a

he CE algorithm will converge in probability to the true
proximate them with sample means of the data. Our esti-

parameters of the dynamical system’s PLG.

mates ofl” andA given the data are then

N Y Y2 T Un Caveats We prove Theorem 2 in Appendix A.4. This is
I'= : : : , and an important result—a consistent estimation procedure en-
ables us to find a model that is arbitrarily close to the true

YN-n YN-n+1 " YN : . e :
N - model, assuming one exists and the training set is large
A= Tny1 - Un) - enough. However, it has a weakness: It requires Fhat
Substituting these estimates and solvinggowe obtain have full rank. This condition could be violated if, for ex-
NN ample,.;p = 0. Fortunately, this condition is only required

to estimatgy (see proof); an improved consistent estimator
The noise terms for each row are not independent of eacfor g would generalize this result to non-UMT systems.
other, so this is in general a biased estimate. dflowever,

LI . : There is an additional caveat to the CE algorithm: while it
as we shall see, its bias shrinks/dsncreases.

is consistent and works well with large numbers of traces in
The (unestimated) matriX may or may not have full rank. its training set, it does not impose constraints on the param-
WhenI has full rank, there is a unique linear treggthat  eters (i.e. that the variance update of (9) yields a positive
can produce the means of the system; we say such systerssmidefinite matrix at each time step). However, this algo-
are UMT (Unique Mean Trend). For non-UMT systerjis, rithm is the first one suggested by the model. We expect
may behave poorly as the number of traces increases.  that further development will alleviate this problem.
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Figure 1: Comparison of EM on LDSs and PLG Learning (Values closer to zero are better)

4 EXPERIMENTAL SETUP AND line is plotted against a slightly perturbeehxis to prevent
RESULTS overlap of error bars; the error bars show one standard de-
viation in the errors. Values below the dotted line=€ 0)

We compare our |earning a|gorithm to the Expectationshow a pOOI"fit of the data. These eXperimentS show that
Maximization (EM) algorithm for LDSs (Ghahramani & the CE algorithm performs very well compared to EM.

Hinton, 1996; Ghahramani, 2002). To compare them, w§p, Figure 1(a), we show the results of the two algorithms
randomly generated a series of test systems and generaigflen, trained on data of dimension 2. Note that the PLG
a dataset for each. We then took various subsets from|ot starts atk’ = 1000 instead of K = 100. This is be-
each dataset and trained models using both algorithms. V@ause 1 of the 26 models learned returned illegal parame-
found that our PLG learning algorithm outperformed EM (g5 as described in the previous section. When 2, the

for large training sets, particularly as the dimensions of thes| G |earning algorithm performs comparably to EM when

models increased. Additionally, we present some empiricajhe training set contains 10,000 or more traces, though its
evidence that the parameters learned by our PLG learninggiance is greater.

algorithm converge toward the true parameters. ) o .
However, when the dimension is 4 (Figure 1(b)), we see

Setup We randomly generated LDSs whose dimensionspat the PLG algorithm begins to outperform EM on a rel-
(n) were 2, 4, and 8 (Appendix A.5 explains the proce- atjvely small data set{ = 1000); on larger data sets, the

dure). To generate a dataset, we first computed the equiv@y| G had less bias and much smaller variance than EM.
lent PLG parameters as in the proof of Theorem 1. We then

produced 500,000 traces, each with: observations, and Figures 1(c) and 1(d) show the results when the dimension
trained PLGs and LDSs on several subsets of the datasé¥as 8. Note that thg-axis covers a much larger range
running both on 100, 1000, 10,000, 50,000, 100,000, and? Figure 1(c) than in any of the other figures (we would
(except whem = 8) 500,000 tracesK). For each model
learned in this fashion, we reported the efrgg«, wherel,

was the log-likelihood of the training data given the learned
parameters and, was the log-likelihood of the training
data (K traces) given the actual parameters; this is the error
in log-likelihood per trace. In each case, the learning algo-
rithms were giverm—the dimension of the model learned

0.1 £F

Mean L1 Error in Parameters

was the same as the dimension of the generating system. | PLG,N=80 +

001 i LDS EM, N=80 -fi--:- ; : ;
Results The results of these experiments are depicted in 00 1000 10000 100000
Figure 1; each plot shows results averaged over 26 test sys- Number of Traces

tems. The number of traces in the training set is plotted _ _ _ _
on thez-axis and the error is plotted on theaxis. Each Figure 2: L1 Error in Parameters (Dimension = 8)



expect the range to be approximately double, as there amesults indicate that PLG models can be useful because of
twice as many data points per trace). Here, we can see thtteir potential for more accurate model identification.

EM performed relatively poorly. EM’s performance never

comes close to that of the PLG algorithm, which is shownAcknowledgements

in more detail in Figure 1(d) by zooming in on theaxis.
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We can also see evidence corroborating Theorem 2 in Fignte| Corp. and by grant 1S 0413004 from NSF.

ure 2 (a log-log plot). This figure shows, for EM and PLG

learning, the mean of the L1 norm of the difference be-references

tween the learned parameters and the true parameter values

(divided by the number of parameters) when the dimensioft-atlin, D. E. (1989).Estimation, control, and the discrete
was 8. We converted the LDS parameters learned by EM  Kalman filter. Springer-Verlag New York.

into PLG parameters so that the results are directly compeGroot, M. H., & Schervish, M. J. (2002)Probability
parable. We can see a downward trend (the trendline is and Statistics Addison Wesley.

plﬂl|otted "? the Figure) in the diflquenge for PLG learning, aSGhahramani, Z. (2002) Machine Learning Toolbox v1.0

the consistency property would lead Us 1o expect. [Computer Software] Retrieved February 16, 2005,
www.gatsby.ucl.ac.uk/"zoubin/software/ Ids.tar.gz.

Ghahramani, Z., & Hinton, G. E. (1996). Parameter estima-

tion for linear dynamical systems. Tech. rep. CRG-
TR-96-2, Dept. of Computer Science, U. of Toronto.

5 CONCLUSION AND FUTURE WORK

We have introduced the Predictive Linear Gaussian model,
a predictive model for discrete-time, continuous observa-
tion systems. We have shown that the PLG subsumes Lirf@€ger, H. (1997). Observable operator models II: Inter-
ear Dynamical Systems (with scalar observations) and re-  Pretable models and model inductions.  Arbeitspa-
quires fewer parameters. We discussed how the use of piere der GMD 1083, GMD, St. Augustine.

statistics over a finite number of future observations as stat§alman, R. E. (1960). A new approach to linear filtering

allows a PLG model to retain the infinite memory property and prediction problenmilransactions of the ASME—
of LDS models without positing unobservable state vari- Journal of Basic Engineerin@2(Series D), 35-45.
ables. We have also proposed a consistent learning algQittman, M. L., Sutton, R. S., & Singh, S. (2001). Predic-
rithm for PLG models which takes advantage of the fact tive representations of state. NiPS 14

that its parameters have statistical meanings with respe . . .
to the data. Finally, we have compared this algorithm to?\harshall, G & Olkin, 1. (.1984)' Generating correlation
Expectation Maximization for LDSs, and shown that our matrices.SIAM J. Sci. Stat. Compu(2), 470-475.
algorithm has some empirical advantages over EM, parRivest, R. L., & Schapire, R. E. (1994). Diversity-based
ticularly as the model dimension increases. While EM is inference of finite automataJournal of the ACM
not the only (or necessarily the best) algorithm for learning 41(3), 555-589.

LDSs, itis a widely used algorithm for a well-studied class singh, S., James, M. R., & Rudary, M. (2004). Predictive

of models. The fact that CE, an early algorithm for a new state representations: A new theory for mode”ng dy_
class of models, is competitive indicates that CE and PLGs namical systems. IWAI 20

are worth further study. Welch, G., & Bishop, G. (2004). An introduction to the
There are several important areas of future work. First, Kalman filter. Tech. rep. TR 95-041, U. of N. Car-
there are some constraints between the parameters of the  olina at Chapel Hill, Dept. of Computer Science.
PLG; X1, g, C, ando? cannot be specified independently Wolfe, B., James, M. R., & Singh, S. (2005). Learning
of one another. These constraints must be identified and  ajctive state representations in dynamical systems
considered in the learning algorithm. Additionally, maxi- without reset. IHCML 22.

mum likelihood estimation (MLE) should be explored; in

cases when few traces are available, our algorithm perform

poorly, and MLE may perform better. We are also exten 3‘ APPENDIX
ing PLG models to allow vector-observations as well as to .
represent controlled dynamical systems. A.l The PLG Update Equations

Of course, the PLG model cannot completely replace th&Ve show that, ifu; = E[Z;|h:] and X, = Var[Z;|h],
LDS model. In some applications estimating the value ofand if ;,; and ¥, are computed by the state update
posited and unobserved state variables is inherently impoequations (8) and (9), them. 1 = E[Z;11|h¢, y:+1] and
tant; for example, a GPS receiver estimates latitude an®ar;; = Var[Z;1|he, ye41]. SinceYiiq, ..., Yipny1|he
longitude from satellite signals and reports these estimateare jointly distributed according to a Gaussian distribution,
to a human user. When this is not the case however, ourve can rely on the following lemma:



Lemma 1 If the random variablé@” and random vectoZ
are drawn from a multivariate Gaussian distribution with
meanu” = [pL L] and covariance matrix

o

thenZ|Y =y ~ N(pzy=y, Xz|y=y), Where

T
Oyy Oyygy
oyz Xzz

oy z
Hzly=y = Mz + E(y — py), and (15)
Ovz0yy
EZ|Y:y =Yzz — 7 (16)

(e.g., Theorem 3.5.2 of Catlin, 1989).

If we map Z to Z;14]h; andY to Y;.4|h:, we can de-
rive the update equations as follows. The tergy, =
Var[Y;y1]h:] = ef'Sieq, which is a scalar (the upper-left
element ofy};). Additionally, uy = E[Yii1|he] = ef .
Computinguz, oyz, andX zz requires that we compute
the distribution ofY; ., 1|h:. From (5) and (6) we have
E[Yirnt1lhe] = Elg" Zi|he] + E[nesnialhe] = g7 pe +0,
and from (5) and (7), we have

Cov[Yitnt1 Yig1|hi] COV[QTZt + Mttn+1, €1TZt|ht]

9T Cov[Zs, Zi|hiles
+ Cov[Negn+1, Ze|heler
g Ser + Oy,

where( is the first element of’. From (5) and (6),

Var[Yiynsilhe] = Covlg" Zy + mignia,

gTZt + Negn1 | e
¢TSg+gTC+CTg+ o2

The meanuz = E[Zi1|h]; i.e., itis the lastn — 1
elements ofu; augmented byE[Y;,,1]h:. That is,
nz = Gug. Similarly, oy z = GXie1 + Cie,. Finally,
Y7z = GEGT + GCel +¢,CTGT + 0%e,el. Substi-
tuting these values into (15) and (16) yields (8) and (9).

A.2 LDS Prediction with the Kalman Filter

The LDS dynamics are described in (2), (3), and (4). Since
X; is unobservable, we must turn to the Kalman filter,

which maintains the state variableés = E[X;|h;] and
P = Var[X;|h:] (Kalman, 1960; Welch & Bishop, 2004).
It maintains these through five equations:

T, = AZy_q,
Py = AP A" +Q,
K,=P H'(HP, H' + R)™",
¥y =7, + K(y+ — Hz; ), and

Pt = (In —KtH)Pti.

K, is called theKalman gainat time¢; I,, is then x n
identity matrix. In addition,

Yipilhe ~N(HZ, ,HP \H" + R).  (17)

Equation (17) is key—it is through this distribution that the
Kalman filter allows us to make predictions about future
observations without observing;.

In particular, an observationtime steps in the future has a
Gaussian distribution with the following mean and covari-
ance:
E[Y,1lhe] = HA™ %, and (18)
Var[Yyi|h] = H(AT' P (AT + S,_1)HT + R,
19)
where

S; = iA’“lQ(A’“l)T. (20)
k=1

In addition, we can compute the covarianceYpf; and

Yi4+; wherej > i:

CovlYiri, Yijlhd = HAT'PL (ATHTHT +6;R
+ HA"'S, _HT, (21)

whered;; is the Kronecker delta. We omit this derivation
due to lack of space.

A.3 Proof of Theorem 1

We prove Theorem 1 by construction; given saaglimen-
sional LDS, we compute the parameters of the equivalent
PLG and show that the PLG and the LDS compute the same
distributions for future observations.

We will show that, given am-dimensional LDS with pa-
rametersd, H, @, R, z;, andP[, there is an equivalent
PLG such that, fon > j > > 1,

(no)s = HA'™'ay, (22)
(X0)ij = (Eo)ji ‘
HATT'P(HA™)T +6,R
+HA'S; _HT, (23)
C =1, - ¥g— Rg, (24)
0'2 = HS7LHT + R— gT\Ijn - OTgv (25)

andg is any solution tog” M = HA", whered;; is the
Kronecker deltay; is ann-vector whosg*" element is

i—j+1q. T
(V) = { A il

HAI= LS HT
U is then x n symmetric matrix whoséi + 1)** column is
U, Sy is defined by (20), and/ is then x n matrix whose
ith rowis HA"L,

1<j<i
i+1<j<n’



The element{ ), is E[Y;], so (22) follows directly from of sums, products, and quotients of continuous functions
(18). Likewise,(¥o);; is the covariance of; andY;, so is continuous in the same variables, except where denomi-
(23) follows from (21). nators are zero. ThereforE’ T andT'” A are everywhere

To computeg, note thatE[Y; ,.1|hi] = gTue = continuous Iy, , g, - - -

HA"z;,, and thaty, = Mz, for all t—both of these If X is nonsingular,X ' can be computed by Gaussian
statements follow from (18). Thug is a solution to elimination using a combination of sums, products, and
g"M = HA". quotients of the elements df; division by zero is never
necessary. SincE = I' aty, = E[Y;] andT is full-
rank by assumption;”T" is nonsingular and its inverse is
continuous ing,,7s,, ... aty, = E[Y;]. Thus, the prod-
Cov[Zs, Yepni1lhe] = MP L (HA™)" + T, uctg = (I7T)~'TTA is continuous at this point. Since

. 7, 7 E[Y;] (the weak law of large numbers), by Lemma 2
Recall that the elements &f; are equal to the covariance & . (pTT)~117A = 4.

computed by (21); i.e%, = MP,;M” + ¥+ RI. Then

We can comput&’ by noting that, according to the PLG
model,Cov[Z;, Yiin11]h] = Eirg + C; according to (21),

Recall that, by (5)mf 11 = Yrins1 — 97 2. Since

Y9 = MP M"g+Vg+Rg Mini1 = Yrny1 — gL zF is continuous ag = g and
= MP; (HA")" + Ug+ Rg. G 7 9 Tfins1 7 NMipne1- Further,C; is continuous at

ﬁf—i—n—i—l = Uf+n+1. As K — oo,
ThusC = ¥,, — ¥g — Rg. We can now compute?:

N—-n K
o = Var[Yiiniilhi] = g"Sg —g"C = CTy C; = ﬁ Z YE L int
— (HA"P;(HA™T + HS,HT + R) (N-n) -1 &=
— n N—n K
— (9" MPL,(HAM)T + ¢"Wg + Rg" g) . 1 Z 1 Z k ok
— (g7, — gTWg — RgTqg) — CTyg N-n &K k*lyt+znt+n+1
= HS,H' +R—-¢"w, —CTy. Nen |, K
. tcanbe ¢ Xk okt
N —n K t+i'lt+n+1

From this derivation o2 andC, it can be seen that, given
the correcty; andX, and ag that satisfieg” M = HA",
the PLG model will compute the same distribution for fu- -
ture observations as the Kalman filter for the equivalent

LDS. In addition, we have shown that and X, are the

correct initial state variables. Since (15) and (16) govern = E[E[YitiNt+n+1]ht]]
the conditional distribution of the observations and form t=1

the basis for the Kalman filtering equations and the PLG =
state update, the state variables will remain correct under

updating, and we have shown equivalence.
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The outer expectation in the penultimate line is over all his-

toriesh,; the inner expectation i§; regardless of;.

A.4  Proof of Theorem 2 ) N
By the same argumenmtatis mutandi 5> - 2.

To prove the consistency of the CE learning algorithm, we
will require the following lemma. A.5 Generating Random LDSs

Lemma?2 If Z, 3 zasn — oo, andf : RF — R™ We randomly generated LDS parameters (refer to (2), (3),

is continuous atc, then f(z,,) % f(z) asn — oo (e.g., and (4) for an explanation of the parameters). Each element

DeGroot & Schervish, 2002, pg. 234) of H, A, andz;] was drawn from the uniform distribution
U(-1,1). To avoid systems whose observations would

The estimator of the initial mean vector is the sample meagend toward+oco, A was normalized so thai(4) = A

of the firstn observations across all traces, and the estimagyherep denotes the spectral radius and- U(0,1)).

tor of the initial covariance matrix is the sample covariance

of the firstn, observations across all traces. These estimalVe then generated a random correlation mat@X, by
tors are well known to be consistent. Marshall and Olkin’s (1984) algorithm, and a diagonal ma-

. . . _ trix ¥ whoseiith element wag®:, with z; ~ U(-1,1).
To show thatg is consistent we will require Lemma 2. we computed by £Q'Y. (i.e., Q had variances between
Thus, we first show thaj is continuous iny,,%,,... at  1/4 and4 with random correlations)P;” was drawn like
7, = E[Y;]. Itis clear thatl’ and A are everywhere con- (), andR was drawn like an element &f.
tinuous in these variables. We note that any combination



