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Abstract

Models of dynamical systems based on pre-
dictive state representations (PSRs) are defined
strictly in terms of observable quantities, in con-
trast with traditional models (such as Hidden
Markov Models) that use latent variables or state-
space representations. In addition, PSRs have
an effectively infinite memory, allowing them to
model some systems that finite memory-based
models cannot. Thus far, PSR models have pri-
marily been developed for domains with discrete
observations. Here, we develop the Predictive
Linear-Gaussian (PLG) model, a class of PSR
models for domains with continuous observa-
tions. We show that PLG models subsume Linear
Dynamical System models (also called Kalman
filter models or state-space models) while using
fewer parameters. We also introduce an algo-
rithm to estimate PLG parameters from data, and
contrast it with standard Expectation Maximiza-
tion (EM) algorithms used to estimate Kalman
filter parameters. We show that our algorithm
is a consistent estimation procedure and present
preliminary empirical results suggesting that our
algorithm outperforms EM, particularly as the
model dimension increases.

1 INTRODUCTION

In many domains of interest, such as speech recognition,
robot localization, and the stock market, we are inter-
ested in modeling a system that emits continuous obser-
vations. Linear Dynamical System models (LDSs), also
called Kalman filter models or state-space models, are rou-
tinely used in control and prediction tasks in a wide vari-
ety of applications spanning many disciplines. While these
models are very useful when their parameters are known
in advance, these parameters are not easilylearned, partic-
ularly as the model dimension increases. Because LDSs’

state is unobserved (hidden), their parameters are typically
learned using the Expectation Maximization (EM) algo-
rithm. However, EM is only able to find parameters that
maximize the data’s likelihood locally, and may thus learn
an inaccurate model.

In contrast, the state of a model based onpredictive state
representations(PSRs) (Littman, Sutton, & Singh, 2001) is
a set of statistics defined overfutureobservable outcomes.1

PSRs have shown advantages over several traditional mod-
els: they are more expressive than HMMs (Jaeger, 1997;
Singh, James, & Rudary, 2004), and learning PSRs from
data may be more accurate than learning traditional mod-
els with hidden state (Wolfe, James, & Singh, 2005). An
advantage of PSRs over traditional memory-based meth-
ods such as autoregressive and history window or kth-order
Markov models is that PSRs with a finite set of statistics
about the future can model some domains that would re-
quire the memory-based models to use infinite memory.
However, thus far PSR models are limited to domains with
discrete observations.

We present a new PSR model class for continuous obser-
vations, the Predictive Linear-Gaussian model (PLG), and
show that it subsumes classical LDS models (including
Kalman filters and ARMA models), while using fewer pa-
rameters than an equivalent LDS of the same dimension.
We present a learning algorithm that estimates PLG pa-
rameters from data traces, and prove that, under certain
conditions, these estimators areconsistent: As the num-
ber of traces increases, the estimated parameters converge
in probability to their true values. This is in contrast to
the local-optima guarantees of the EM algorithm for LDSs.
Our algorithm’s stronger guarantees crucially exploit the
fact that a PLG’s state uses statistics of observable quanti-
ties. We also present preliminary results suggesting that as
the data set grows, our algorithm learns PLGs that outper-
form LDSs learned via EM, particularly as the dimension
of the models increases.

1Jaeger (1997) and Rivest and Schapire (1994) also developed
models based on predictions of future observable outcomes; PSRs
have built on this earlier work.



2 THE PREDICTIVE
LINEAR-GAUSSIAN MODEL

A model of a dynamical system allows one to make predic-
tions about future events given any history. This is the mod-
eling problem: to find and represent structure in the system
in order to make predictions. We focus on modeling un-
controlled dynamical systems that emit scalar, real-valued
observations at discrete time intervals.

One of the simplest models of this type is then-dimen-
sional Autoregressive (AR) model, which posits that the
observation at any time step is a linear combination of the
previousn observations plus an independent noise term.
Let Yt be the random variable modeling the observation at
time stept (yt will represent a realization of that variable).
Then the AR model’s dynamics at timet is defined by

Yt = at +
n∑

i=1

φiyt−i, (1)

whereat ∼ N (0, σ2
AR) is the i.i.d. noise term andN (µ,Σ)

denotes the Gaussian distribution with meanµ and covari-
ance matrixΣ.

A drawback to the AR model is that it has a finite memory:
Given the history of observations up to timet, the obser-
vations up to timet − n no longer affect the dynamics of
the system. That is, ifB is any future event in the system,
Pr(B|y1, . . . , yt) = Pr(B|yt−n+1, . . . , yt).

The LDS model addresses the finite-memory limitation by
adding hidden state to the mix: The (unobserved) state vec-
tor at a particular time is a noisy linear function of the previ-
ous state vector, and the observation is a noisy linear func-
tion of the state. Formally, letXt be the state vector at time
t. The initial state is drawn from a normal distribution with
meanx̂−1 and covarianceP−

1 :

X1 ∼ N (x̂−1 , P−
1 ). (2)

The observation at timet is a linear function of the state,
plus mean-zero i.i.d. noise:

Yt|Xt = xt ∼ N (Hxt, R), (3)

whereH is the linear mapping from the state vector to the
observation, andR is the variance of the noise. Finally, the
next state is a linear function of the current state, again with
mean-zero i.i.d. noise added:

Xt+1|Xt = xt ∼ N (Axt, Q), (4)

whereA is the linear trend in the state space andQ is the
covariance matrix of the noise. Because the state vector is
unobservable, a distribution over underlying states must be
computed; this is accomplished using the Kalman filter (see

Appendix A.2).2 The state vector can retain information
about observations that are arbitrarily far in the past.

This infinite-memory property can be retained without
positing unobservable state variables. Here, we develop
such a model, the Predictive Linear-Gaussian model, and
show that it is as powerful as the LDS model. A PLG model
makes four assumptions about the structure of the system;
as we state these assumptions, we develop the mathematics
underlying the formal model.

Our first assumptionis that, for some finiten, the distri-
bution of all the future observations is completely charac-
terized by the distribution of the nextn observations. That
is, the distribution of then following observations serves as
the state of the system; equivalently, this distribution serves
as asufficient statisticfor history in this system. Note that
this is not the nth-order Markov assumption; state as full
distributional information about thenextn observations is
quite different than state as knowledge of the actualpastn
observations.

Our second assumptionis that all observations are jointly
distributed according to a multivariate Gaussian distribu-
tion. This an extremely useful restriction. The Gaus-
sian distribution has the conjugacy property; that is, if
a set of variablesX1, . . . , Xp are jointly Gaussian and
X1 = x1 is observed, the new conditional distribution of
X2, . . . , Xp|X1 = x1 is also a multivariate Gaussian dis-
tribution. In addition, this distribution is completely char-
acterized by its vector of means and its covariance ma-
trix; taken in combination with the previous assumption,
we can represent the state of the system at timet by an
n-dimensional mean vectorµt and ann × n covariance
matrix Σt. In particular, the firstn observations are drawn
from a Gaussian distribution specified by the initial state.
Let Zt = [Yt+1 · · · Yt+n]T represent then observations
following time t. Then

Z0 ∼ N (µ0,Σ0).

The first assumption raises an implicit question: Given the
distributions of the nextn observations, how do we extend
that to the(n + 1)st? If we provide an answer to this ques-
tion, then we can use the current state to compute the dis-
tribution for any future observation given the observations
seen so far. The answer is given by ourthird assumption:
The(n + 1)st observation is a weighted sum of the nextn
observations, plus a Gaussian noise term. However, we do
not assume that these noise terms are independent of one
another. Formally, at timet,

Yt+n+1 = gT Zt + ηt+n+1, (5)

whereηt+n+1 models the noise in the system andg is then-
dimensional vector that defines the linear trend in the sys-

2These LDS equations can be extended to the case where the
observations,Yt, are eachm-vectors; we restrict our attention to
the case wherem = 1.



tem. The proper way to view (5) is as an extension of the
look-ahead horizon—µt andΣt model the distribution of
the nextn observations, while (5) allows us to extend the
distribution to observations that arefurther in the future.
We will see that the distribution ofηt+n+1 becomes impor-
tant when we observeyt and wish to update the state.

Thefourth assumptionis that the distribution ofηt+n+1|ht

does not depend upon the value oft, whereht is the history
of observations up to timet, i.e. y1, y2, . . . , yt. That is,

ηt+n+1|ht ∼ N (0, σ2). (6)

In addition, the covariance ofηt+n+1 with then observa-
tions followingt is a constant vectorC; i.e.

Cov[Zt, ηt+n+1|ht] = C. (7)

As mentioned in the second assumption above, because the
observations are drawn from a multivariate Gaussian distri-
bution, we capture all information about the distribution of
the nextn observations with the vector of their means,µt =
E[Zt|ht], and their covariance matrix,Σt = Var[Zt|ht].
And because the distribution of the nextn observations
captures all information about the distribution ofall future
observations,µt andΣt are a sufficient statistic forht; that
is, µt andΣt compactly represent all information that is
given by observing the system through timet.

We can maintainµt and Σt with straightforward up-
date equations, again because of the Gaussian distribution.
Given stateµt andΣt, a historyht, and a new observation
Yt+1 = yt+1, we can compute the new state matrices:

µt+1 = Gµt + F
yt+1 − eT

1 µt

eT
1 Σte1

, and (8)

Σt+1 = GΣtG
T + B − FFT

eT
1 Σte1

, (9)

whereei is theith column of then× n identity matrix,

B = σ2eneT
n + GCeT

n + enCT GT ,

F = GΣte1 + C1en,

G =
(

0 In−1

gT

)
,

C1 is the is the first element ofC, andIn−1 is the(n−1)×
(n− 1) identity matrix. See Appendix A.1 for a proof that
these equations are the correct state updates; that is, that
µt+1 = E[Zt+1|ht, yt+1] andΣt+1 = Var[Zt+1|ht, yt+1].

Definition of a PLG With the update equations (8) and
(9), we can define the PLG model. The PLG is the model
whose state at timet is µt andΣt and whose state update
equations are (8) and (9). The parameters of a PLG are
the initial state (µ0 andΣ0), the linear trend (g), and the

statistical properties of the noise (C andσ2). Note that this
is a PSR; the state representation is the mean and variance
of future observations (that is, they are predictions about
future outcomes given the observations seen so far).

It is instructive to contrast the AR model and the PLG
model. The dynamics of the two seem similar (compare
(1) and (5)). In fact, if we restrict a PLG such that its noise
is i.i.d. (i.e. C = 0) and that its covariance matrix is sta-
tionary (i.e. Σi = Σj ∀i, j), they are equivalent. While
the PLG may seem simple because it contains no “hidden
state,” it is in fact as powerful as the LDS model, which
does have hidden state. The PLG’s representational power
comes from the fact that its noise terms covary with the
data; this gives it the infinite memory of the LDS—an ob-
servation can have an effect far in the future through the
chain of influence created by the correlation in the noise
terms. However, the similarities between PLGs and AR
models are as important as their differences. The fact that
PLGs are defined exclusively in terms of observation data,
as are AR models, allows us to specify a consistent learning
algorithm for PLGs (as we shall see in the next section).

Theorem 1 Any LDS withn-dimensional state and scalar
observations has an equivalentn-dimensional PLG.

We defer the proof of Theorem 1 to Appendix A.3. Note
that ann-dimensional PLG has fewer parameters than an
n-dimensional LDS. Whilêx−1 , P−

t , H, andR match up to
µ0, Σ0, g, andσ2, Q andA are larger thanC. An LDS thus
has(3n2 − n)/2 more parameters than an equivalent PLG.

The AR and ARMA (Autoregressive Moving-Average)
models are also widely used to analyze time-series data.
These models are strictly subsumed by LDS models, im-
plying that PLGs strictly subsume them too.

3 LEARNING PLGS

Given a corpus of data generated by a dynamical system,
we would like to estimate the parameters of a PLG that
models that system. Define atrace to be a sequence of ob-
servations emitted by a dynamical system, starting from the
initial state. Then we would like to estimate PLG parame-
ters givenK traces, with each trace containingN observa-
tions. But how shall we go about this?

When it comes to model learning, PLGs have several po-
tential advantages over LDSs. First, PLGs have fewer pa-
rameters than LDSs of the same dimension. In addition,
the parameters of PLGs have a definite meaning with re-
spect to the data; for example, a PLG’sσ2 is the variance
of (Yt+n+1 − gT Zt)|ht. On the other hand, an LDS’sQ
is the covariance matrix for the latent variables, which is
not directly related to the observation data. Finally, there is
no inherent symmetry in the PLG parameters; in an LDS,
two latent variables can be switched by swapping the ap-



propriate rows and columns inH, Q, A, x̂−1 , andP−
1 . This

symmetry can cause problems for learning LDS models.

We propose a learning algorithm, which we call the Con-
sistent-Estimation (CE) algorithm, that relies upon the sec-
ond advantage, the meaning of the PLG parameters. Again,
suppose that we are given a dataset composed ofK traces,
with each trace containingN observations. Letyk

t be the
tth observation from thekth trace.

Initial State The initial state matrices,µ0 andΣ0, are just
the mean and covariance of the firstn observations. Thus,
they can be estimated by the sample mean and covariance
across all traces of these observations. That is,

(µ̂0)i = yi ≡
1
K

K∑
k=1

yk
i (10)

(Σ̂0)ij =
1

K − 1

K∑
k=1

(yk
i − yi)(y

k
j − yj). (11)

Note that these are unbiased estimators for the initial state.

Linear Trend The linear trend in the data,g, can be es-
timated by taking advantage of the fact that itis the lin-
ear trend. That is,E[Yt+n+1] = E[gT Zt] + E[ηt+n+1] =
gT E[Zt] (note that these arenot conditioned on any his-
tory). Here we have taken advantage of the fact that
E[ηt+n+1] = E[E[ηt+n+1|ht]], by the smoothing property
of expectations. Regardless ofht’s value, the inner expec-
tation is 0, and soE[ηt+n+1] = 0. ThusΓg = Λ where

Γ =

 E[Y1] · · · E[Yn]
...

...
E[YN−n] · · · E[YN−1]

 , and

Λ = (E[Yn+1] · · · E[YN ])T
.

These expectations are not known. However, we can ap-
proximate them with sample means of the data. Our esti-
mates ofΓ andΛ given the data are then

Γ̂ =

 y1 y2 · · · yn
...

...
...

yN−n yN−n+1 · · · yN−1

 , and

Λ̂ =
(
yn+1 · · · yN

)T
.

Substituting these estimates and solving forg, we obtain

ĝ = (Γ̂T Γ̂)−1Γ̂T Λ̂. (12)

The noise terms for each row are not independent of each
other, so this is in general a biased estimate ofg. However,
as we shall see, its bias shrinks asK increases.

The (unestimated) matrixΓ may or may not have full rank.
WhenΓ has full rank, there is a unique linear trend,g, that
can produce the means of the system; we say such systems
are UMT (Unique Mean Trend). For non-UMT systems,ĝ
may behave poorly as the number of traces increases.

Noise Parameters We estimateC andσ2 by taking ad-
vantage of the fact that they are statistical properties of the
noise term,ηt+n+1. Given an estimate ofg, we can esti-
mate the noise term using its definition in (5);η̂k

t+n+1 =
yk

t+n+1 − ĝT zk
t , wherezk

t is the vector[yk
t+1 · · · yk

t+n]T .
Then we can estimateC by the sample covariance of the
estimated noise with then preceding observations;σ2 can
be estimated by the sample variance of the noise estimates.
When computing statistics of the noise, we take advantage
of the fact thatE[ηt+n+1] = 0 for all t:

Ĉi =
1

K(N − n)− 1

N−n−1∑
t=0

K∑
k=1

yk
t+iη̂

k
t+n+1, and (13)

σ̂2 =
1

K(N − n)− 1

N−n−1∑
t=0

K∑
k=1

(η̂k
t+n+1)

2. (14)

These estimators areconsistentwhenever the system is
UMT: As the number of traces increases, they converge in
probability to the true parameters. That is, the probability
that they differ from the true parameters vanishes:

Definition 1 The sequencêx1, x̂2, . . . converges tox in
probability if limn→∞ Pr(|x̂n − x| > ε) = 0 for every
positiveε. We write this as “̂xn

−→p x asn →∞.”

The learning algorithm that computes the estimators de-
fined by (10), (11), (12), (13), and (14) is called the Con-
sistent Estimation (CE) algorithm.

Theorem 2 If a dynamical system can be modeled by an
n-dimensional PLG, is UMT, and generates a training set
whose traces are at least2n time steps long, then, as the
number of tracesK grows, the parameters computed by
the CE algorithm will converge in probability to the true
parameters of the dynamical system’s PLG.

Caveats We prove Theorem 2 in Appendix A.4. This is
an important result—a consistent estimation procedure en-
ables us to find a model that is arbitrarily close to the true
model, assuming one exists and the training set is large
enough. However, it has a weakness: It requires thatΓ
have full rank. This condition could be violated if, for ex-
ample,µ0 = 0. Fortunately, this condition is only required
to estimateg (see proof); an improved consistent estimator
for g would generalize this result to non-UMT systems.

There is an additional caveat to the CE algorithm: while it
is consistent and works well with large numbers of traces in
its training set, it does not impose constraints on the param-
eters (i.e. that the variance update of (9) yields a positive
semidefinite matrix at each time step). However, this algo-
rithm is the first one suggested by the model. We expect
that further development will alleviate this problem.
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Figure 1: Comparison of EM on LDSs and PLG Learning (Values closer to zero are better)

4 EXPERIMENTAL SETUP AND
RESULTS

We compare our learning algorithm to the Expectation
Maximization (EM) algorithm for LDSs (Ghahramani &
Hinton, 1996; Ghahramani, 2002). To compare them, we
randomly generated a series of test systems and generated
a dataset for each. We then took various subsets from
each dataset and trained models using both algorithms. We
found that our PLG learning algorithm outperformed EM
for large training sets, particularly as the dimensions of the
models increased. Additionally, we present some empirical
evidence that the parameters learned by our PLG learning
algorithm converge toward the true parameters.

Setup We randomly generated LDSs whose dimensions
(n) were 2, 4, and 8 (Appendix A.5 explains the proce-
dure). To generate a dataset, we first computed the equiva-
lent PLG parameters as in the proof of Theorem 1. We then
produced 500,000 traces, each with10n observations, and
trained PLGs and LDSs on several subsets of the dataset,
running both on 100, 1000, 10,000, 50,000, 100,000, and
(except whenn = 8) 500,000 traces (K). For each model
learned in this fashion, we reported the errorlt−la

K , wherelt
was the log-likelihood of the training data given the learned
parameters andla was the log-likelihood of the training
data (K traces) given the actual parameters; this is the error
in log-likelihood per trace. In each case, the learning algo-
rithms were givenn—the dimension of the model learned
was the same as the dimension of the generating system.

Results The results of these experiments are depicted in
Figure 1; each plot shows results averaged over 26 test sys-
tems. The number of traces in the training set is plotted
on thex-axis and the error is plotted on they-axis. Each

line is plotted against a slightly perturbedx-axis to prevent
overlap of error bars; the error bars show one standard de-
viation in the errors. Values below the dotted line (y = 0)
show a poor fit of the data. These experiments show that
the CE algorithm performs very well compared to EM.

In Figure 1(a), we show the results of the two algorithms
when trained on data of dimension 2. Note that the PLG
plot starts atK = 1000 instead ofK = 100. This is be-
cause 1 of the 26 models learned returned illegal parame-
ters, as described in the previous section. Whenn = 2, the
PLG learning algorithm performs comparably to EM when
the training set contains 10,000 or more traces, though its
variance is greater.

However, when the dimension is 4 (Figure 1(b)), we see
that the PLG algorithm begins to outperform EM on a rel-
atively small data set (K = 1000); on larger data sets, the
PLG had less bias and much smaller variance than EM.

Figures 1(c) and 1(d) show the results when the dimension
was 8. Note that they-axis covers a much larger range
in Figure 1(c) than in any of the other figures (we would
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Figure 2: L1 Error in Parameters (Dimension = 8)



expect the range to be approximately double, as there are
twice as many data points per trace). Here, we can see that
EM performed relatively poorly. EM’s performance never
comes close to that of the PLG algorithm, which is shown
in more detail in Figure 1(d) by zooming in on they-axis.

We can also see evidence corroborating Theorem 2 in Fig-
ure 2 (a log-log plot). This figure shows, for EM and PLG
learning, the mean of the L1 norm of the difference be-
tween the learned parameters and the true parameter values
(divided by the number of parameters) when the dimension
was 8. We converted the LDS parameters learned by EM
into PLG parameters so that the results are directly com-
parable. We can see a downward trend (the trendline is
plotted in the Figure) in the difference for PLG learning, as
the consistency property would lead us to expect.

5 CONCLUSION AND FUTURE WORK

We have introduced the Predictive Linear Gaussian model,
a predictive model for discrete-time, continuous observa-
tion systems. We have shown that the PLG subsumes Lin-
ear Dynamical Systems (with scalar observations) and re-
quires fewer parameters. We discussed how the use of
statistics over a finite number of future observations as state
allows a PLG model to retain the infinite memory property
of LDS models without positing unobservable state vari-
ables. We have also proposed a consistent learning algo-
rithm for PLG models which takes advantage of the fact
that its parameters have statistical meanings with respect
to the data. Finally, we have compared this algorithm to
Expectation Maximization for LDSs, and shown that our
algorithm has some empirical advantages over EM, par-
ticularly as the model dimension increases. While EM is
not the only (or necessarily the best) algorithm for learning
LDSs, it is a widely used algorithm for a well-studied class
of models. The fact that CE, an early algorithm for a new
class of models, is competitive indicates that CE and PLGs
are worth further study.

There are several important areas of future work. First,
there are some constraints between the parameters of the
PLG; Σ1, g, C, andσ2 cannot be specified independently
of one another. These constraints must be identified and
considered in the learning algorithm. Additionally, maxi-
mum likelihood estimation (MLE) should be explored; in
cases when few traces are available, our algorithm performs
poorly, and MLE may perform better. We are also extend-
ing PLG models to allow vector-observations as well as to
represent controlled dynamical systems.

Of course, the PLG model cannot completely replace the
LDS model. In some applications estimating the value of
posited and unobserved state variables is inherently impor-
tant; for example, a GPS receiver estimates latitude and
longitude from satellite signals and reports these estimates
to a human user. When this is not the case however, our

results indicate that PLG models can be useful because of
their potential for more accurate model identification.
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A APPENDIX

A.1 The PLG Update Equations

We show that, ifµt = E[Zt|ht] and Σt = Var[Zt|ht],
and if µt+1 and Σt+1 are computed by the state update
equations (8) and (9), thenµt+1 = E[Zt+1|ht, yt+1] and
Vart+1 = Var[Zt+1|ht, yt+1]. SinceYt+1, . . . , Yt+n+1|ht

are jointly distributed according to a Gaussian distribution,
we can rely on the following lemma:



Lemma 1 If the random variableY and random vectorZ
are drawn from a multivariate Gaussian distribution with
meanµT = [µT

Y µT
Z ] and covariance matrix

Σ =
(

σY Y σT
Y Z

σY Z ΣZZ

)
,

thenZ|Y = y ∼ N (µZ|Y =y,ΣZ|Y =y), where

µZ|Y =y = µZ +
σY Z

σY Y
(y − µY ), and (15)

ΣZ|Y =y = ΣZZ −
σY ZσT

Y Z

σY Y
(16)

(e.g., Theorem 3.5.2 of Catlin, 1989).

If we map Z to Zt+1|ht and Y to Yt+1|ht, we can de-
rive the update equations as follows. The termσY Y =
Var[Yt+1|ht] = eT

1 Σte1, which is a scalar (the upper-left
element ofΣt). Additionally, µY = E[Yt+1|ht] = eT

1 µt.
ComputingµZ , σY Z , andΣZZ requires that we compute
the distribution ofYt+n+1|ht. From (5) and (6) we have
E[Yt+n+1|ht] = E[gT Zt|ht] + E[ηt+n+1|ht] = gT µt + 0,
and from (5) and (7), we have

Cov[Yt+n+1, Yt+1|ht] = Cov[gT Zt + ηt+n+1, e
T
1 Zt|ht]

= gT Cov[Zt, Zt|ht]e1

+ Cov[ηt+n+1, Zt|ht]e1

= gT Σte1 + C1,

whereC1 is the first element ofC. From (5) and (6),

Var[Yt+n+1|ht] = Cov[gT Zt + ηt+n+1,

gT Zt + ηt+n+1|ht]
= gT Σtg + gT C + CT g + σ2.

The meanµZ = E[Zt+1|ht]; i.e., it is the lastn − 1
elements ofµt augmented byE[Yt+n+1|ht]. That is,
µZ = Gµt. Similarly, σY Z = GΣte1 + C1en. Finally,
ΣZZ = GΣtG

T + GCeT
n + enCT GT + σ2eneT

n . Substi-
tuting these values into (15) and (16) yields (8) and (9).

A.2 LDS Prediction with the Kalman Filter

The LDS dynamics are described in (2), (3), and (4). Since
Xt is unobservable, we must turn to the Kalman filter,
which maintains the state variableŝx−t = E[Xt|ht] and
P−

t = Var[Xt|ht] (Kalman, 1960; Welch & Bishop, 2004).
It maintains these through five equations:

x̂−t = Ax̂t−1,

P−
t = APt−1A

T + Q,

Kt = P−
t HT (HP−

t HT + R)−1,

x̂t = x̂−t + Kt(yt −Hx̂−t ), and

Pt = (In −KtH)P−
t .

Kt is called theKalman gainat time t; In is then × n
identity matrix. In addition,

Yt+1|ht ∼ N (Hx̂−t+1,HP−
t+1H

T + R). (17)

Equation (17) is key—it is through this distribution that the
Kalman filter allows us to make predictions about future
observations without observingXt.

In particular, an observationi time steps in the future has a
Gaussian distribution with the following mean and covari-
ance:

E[Yt+i|ht] = HAi−1x̂−t+1, and (18)

Var[Yt+i|ht] = H(Ai−1P−
t+1(A

i−1)T + Si−1)HT + R,
(19)

where

Si =
i∑

k=1

Ak−1Q(Ak−1)T . (20)

In addition, we can compute the covariance ofYt+i and
Yt+j wherej ≥ i:

Cov[Yt+i, Yt+j |ht] = HAj−1P−
t+1(A

i−1)T HT + δijR

+ HAj−iSi−1H
T , (21)

whereδij is the Kronecker delta. We omit this derivation
due to lack of space.

A.3 Proof of Theorem 1

We prove Theorem 1 by construction; given ann-dimen-
sional LDS, we compute the parameters of the equivalent
PLG and show that the PLG and the LDS compute the same
distributions for future observations.

We will show that, given ann-dimensional LDS with pa-
rametersA, H, Q, R, x̂−1 , andP−

1 , there is an equivalent
PLG such that, forn ≥ j ≥ i ≥ 1,

(µ0)i = HAi−1x̂−1 , (22)

(Σ0)ij = (Σ0)ji

= HAj−1P−
1 (HAi−1)T + δijR

+ HAj−iSi−1H
T , (23)

C = Ψn −Ψg −Rg, (24)

σ2 = HSnHT + R− gT Ψn − CT g, (25)

andg is any solution togT M = HAn, whereδij is the
Kronecker delta,Ψi is ann-vector whosejth element is

(Ψi)j =
{

HAi−j+1Sj−1H
T 1 ≤ j ≤ i

HAj−i−1SiH
T i + 1 ≤ j ≤ n

,

Ψ is then×n symmetric matrix whose(i+1)th column is
Ψi, Sk is defined by (20), andM is then×n matrix whose
ith row isHAi−1.



The element(µ0)i is E[Yi], so (22) follows directly from
(18). Likewise,(Σ0)ij is the covariance ofYi andYj , so
(23) follows from (21).

To compute g, note that E[Yt+n+1|ht] = gT µt =
HAnx̂−t+1 and thatµt = Mx̂−t+1 for all t—both of these
statements follow from (18). Thusg is a solution to
gT M = HAn.

We can computeC by noting that, according to the PLG
model,Cov[Zt, Yt+n+1|ht] = Σtg + C; according to (21),

Cov[Zt, Yt+n+1|ht] = MP−
t+1(HAn)T + Ψn.

Recall that the elements ofΣt are equal to the covariance
computed by (21); i.e.,Σt = MP−

t+1M
T + Ψ + RI. Then

Σtg = MP−
t+1M

T g + Ψg + Rg

= MP−
t+1(HAn)T + Ψg + Rg.

ThusC = Ψn −Ψg −Rg. We can now computeσ2:

σ2 = Var[Yt+n+1|ht]− gT Σtg − gT C − CT g

= (HAnP−
t+1(HAn)T + HSnHT + R)

− (gT MP−
t+1(HAn)T + gT Ψg + RgT g)

− (gT Ψn − gT Ψg −RgT g)− CT g

= HSnHT + R− gT Ψn − CT g.

From this derivation ofσ2 andC, it can be seen that, given
the correctµt andΣt and ag that satisfiesgT M = HAn,
the PLG model will compute the same distribution for fu-
ture observations as the Kalman filter for the equivalent
LDS. In addition, we have shown thatµ0 andΣ0 are the
correct initial state variables. Since (15) and (16) govern
the conditional distribution of the observations and form
the basis for the Kalman filtering equations and the PLG
state update, the state variables will remain correct under
updating, and we have shown equivalence.

A.4 Proof of Theorem 2

To prove the consistency of the CE learning algorithm, we
will require the following lemma.

Lemma 2 If x̂n
−→p x as n → ∞, and f : Rk → Rm

is continuous atx, thenf(x̂n) −→p f(x) asn → ∞ (e.g.,
DeGroot & Schervish, 2002, pg. 234)

The estimator of the initial mean vector is the sample mean
of the firstn observations across all traces, and the estima-
tor of the initial covariance matrix is the sample covariance
of the firstn observations across all traces. These estima-
tors are well known to be consistent.

To show thatĝ is consistent we will require Lemma 2.
Thus, we first show that̂g is continuous iny1, y2, . . . at
yt = E[Yt]. It is clear that̂Γ andΛ̂ are everywhere con-
tinuous in these variables. We note that any combination

of sums, products, and quotients of continuous functions
is continuous in the same variables, except where denomi-
nators are zero. Therefore,Γ̂T Γ̂ andΓ̂T Λ̂ are everywhere
continuous iny1, y2, . . ..

If X is nonsingular,X−1 can be computed by Gaussian
elimination using a combination of sums, products, and
quotients of the elements ofX; division by zero is never
necessary. SincêΓ = Γ at yt = E[Yt] and Γ is full-
rank by assumption,ΓT Γ is nonsingular and its inverse is
continuous iny1, y2, . . . at yt = E[Yt]. Thus, the prod-
uct ĝ = (Γ̂T Γ̂)−1Γ̂T Λ̂ is continuous at this point. Since
yt
−→p E[Yt] (the weak law of large numbers), by Lemma 2

ĝ −→p (ΓT Γ)−1ΓT Λ = g.

Recall that, by (5),ηk
t+n+1 = yk

t+n+1 − gT zk
t . Since

η̂k
t+n+1 = yk

t+n+1 − ĝT zk
t is continuous at̂g = g and

ĝ −→p g, η̂k
t+n+1

−→p ηk
t+n+1. Further,Ĉi is continuous at

η̂k
t+n+1 = ηk

t+n+1. As K →∞,

Ĉi =
1

K(N − n)− 1

N−n∑
t=1

K∑
k=1

yk
t+iη̂

k
t+n+1

→ 1
N − n

N−n∑
t=1

1
K

K∑
k=1

yk
t+iη̂

k
t+n+1

−→p 1
N − n

N−n∑
t=1

1
K

K∑
k=1

yk
t+iη

k
t+n+1

−→p 1
N − n

N−n∑
t=1

E[Yt+iηt+n+1]

=
1

N − n

N−n∑
t=1

E[E[Yt+iηt+n+1|ht]]

= Ci.

The outer expectation in the penultimate line is over all his-
toriesht; the inner expectation isCi regardless ofht.

By the same argument (mutatis mutandi), σ̂2 −→p σ2.

A.5 Generating Random LDSs

We randomly generated LDS parameters (refer to (2), (3),
and (4) for an explanation of the parameters). Each element
of H, A, andx̂−1 was drawn from the uniform distribution
U(−1, 1). To avoid systems whose observations would
tend toward±∞, A was normalized so thatρ(A) = λ
(whereρ denotes the spectral radius andλ ∼ U(0, 1)).

We then generated a random correlation matrix,Q′, by
Marshall and Olkin’s (1984) algorithm, and a diagonal ma-
trix Σ whoseiith element was2xi , with xi ∼ U(−1, 1).
We computedQ by ΣQ′Σ (i.e., Q had variances between
1/4 and4 with random correlations).P−

1 was drawn like
Q, andR was drawn like an element ofΣ.


